求解Fokker-Planck方程的自适应归一化流。

IF 3.2 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-08-01 DOI:10.1063/5.0273776
Wanting Xu, Jinqian Feng, Jin Su, Qin Guo, Youpan Han
{"title":"求解Fokker-Planck方程的自适应归一化流。","authors":"Wanting Xu, Jinqian Feng, Jin Su, Qin Guo, Youpan Han","doi":"10.1063/5.0273776","DOIUrl":null,"url":null,"abstract":"<p><p>The Fokker-Planck (FP) equation governs the probabilistic response of diffusion processes driven by stochastic differential equations (SDEs). Gaussian mixture models and deep learning solvers are two state-of-the-art methods for solving the FP equation. Although mixture models mostly depend on empirical sampling strategies and predefined Gaussian components, deep learning techniques suffer from inherent interpretability deficits and require excessively large training samples. To address these challenges, we propose an adaptive normalizing flow framework for solving FP equations (ANFFP). Normalizing flows are generative models that produce tractable distributions to approximate the complex target distributions. The ANFFP architecture inherently preserves probabilistic interpretability while enabling efficient exact sampling advantages that significantly enhance its applicability to probabilistic response modeling under small sample conditions. Numerical examples involving one-dimensional, two-dimensional, and four-dimensional SDEs demonstrate the effectiveness of the method. In addition, the computational complexity of the ANFFP method is discussed in more detail. This work provides a new paradigm for solving high-dimensional FP equations with theoretical guarantees and practical scalability.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 8","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive normalizing flows for solving Fokker-Planck equation.\",\"authors\":\"Wanting Xu, Jinqian Feng, Jin Su, Qin Guo, Youpan Han\",\"doi\":\"10.1063/5.0273776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Fokker-Planck (FP) equation governs the probabilistic response of diffusion processes driven by stochastic differential equations (SDEs). Gaussian mixture models and deep learning solvers are two state-of-the-art methods for solving the FP equation. Although mixture models mostly depend on empirical sampling strategies and predefined Gaussian components, deep learning techniques suffer from inherent interpretability deficits and require excessively large training samples. To address these challenges, we propose an adaptive normalizing flow framework for solving FP equations (ANFFP). Normalizing flows are generative models that produce tractable distributions to approximate the complex target distributions. The ANFFP architecture inherently preserves probabilistic interpretability while enabling efficient exact sampling advantages that significantly enhance its applicability to probabilistic response modeling under small sample conditions. Numerical examples involving one-dimensional, two-dimensional, and four-dimensional SDEs demonstrate the effectiveness of the method. In addition, the computational complexity of the ANFFP method is discussed in more detail. This work provides a new paradigm for solving high-dimensional FP equations with theoretical guarantees and practical scalability.</p>\",\"PeriodicalId\":9974,\"journal\":{\"name\":\"Chaos\",\"volume\":\"35 8\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0273776\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0273776","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

Fokker-Planck (FP)方程控制随机微分方程(SDEs)驱动的扩散过程的概率响应。高斯混合模型和深度学习求解器是求解FP方程的两种最先进的方法。虽然混合模型主要依赖于经验抽样策略和预定义的高斯分量,但深度学习技术存在固有的可解释性缺陷,并且需要过大的训练样本。为了解决这些挑战,我们提出了一种求解FP方程(ANFFP)的自适应归一化流框架。规范化流是生成模型,它产生可处理的分布以近似复杂的目标分布。ANFFP架构固有地保留了概率可解释性,同时实现了有效的精确抽样优势,显著增强了其对小样本条件下概率响应建模的适用性。涉及一维、二维和四维SDEs的数值算例证明了该方法的有效性。此外,还详细讨论了ANFFP方法的计算复杂度。这项工作为求解高维FP方程提供了一种新的范式,具有理论保证和实际可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive normalizing flows for solving Fokker-Planck equation.

The Fokker-Planck (FP) equation governs the probabilistic response of diffusion processes driven by stochastic differential equations (SDEs). Gaussian mixture models and deep learning solvers are two state-of-the-art methods for solving the FP equation. Although mixture models mostly depend on empirical sampling strategies and predefined Gaussian components, deep learning techniques suffer from inherent interpretability deficits and require excessively large training samples. To address these challenges, we propose an adaptive normalizing flow framework for solving FP equations (ANFFP). Normalizing flows are generative models that produce tractable distributions to approximate the complex target distributions. The ANFFP architecture inherently preserves probabilistic interpretability while enabling efficient exact sampling advantages that significantly enhance its applicability to probabilistic response modeling under small sample conditions. Numerical examples involving one-dimensional, two-dimensional, and four-dimensional SDEs demonstrate the effectiveness of the method. In addition, the computational complexity of the ANFFP method is discussed in more detail. This work provides a new paradigm for solving high-dimensional FP equations with theoretical guarantees and practical scalability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信