{"title":"保守功能,分化进化:真核生物线粒体外膜插入酶。","authors":"Anna Roza Dimogkioka, Doron Rapaport","doi":"10.1515/hsz-2025-0169","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondrial function relies heavily on the proper targeting and insertion of nuclear-encoded proteins into the outer mitochondrial membrane (OMM), a process mediated by specialised biogenesis factors known as insertases. These insertases are essential for the membrane integration of α-helical OMM proteins, which contain one or multiple hydrophobic transmembrane segments. While the general mechanisms of mitochondrial protein import are well established, recent research has shed light on the diversity and evolutionary conservation of OMM insertases across eukaryotic lineages. In <i>Saccharomyces cerevisiae</i>, the mitochondrial import (MIM) complex, composed of Mim1 and Mim2, facilitates the integration of various α-helical OMM proteins, often in cooperation with import receptors such as Tom20 and Tom70. In <i>Trypanosoma brucei</i>, the functional MIM counterpart pATOM36 performs a similar role despite lacking sequence and structural homology, reflecting a case of convergent evolution. In mammals, MTCH2 has emerged as the principal OMM insertase, with MTCH1 playing a secondary, partially redundant role. This review provides a comparative analysis of these insertases, emphasising their conserved functionality, species-specific adaptations, and mechanistic nuances.</p>","PeriodicalId":8885,"journal":{"name":"Biological Chemistry","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conserved function, divergent evolution: mitochondrial outer membrane insertases across eukaryotes.\",\"authors\":\"Anna Roza Dimogkioka, Doron Rapaport\",\"doi\":\"10.1515/hsz-2025-0169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mitochondrial function relies heavily on the proper targeting and insertion of nuclear-encoded proteins into the outer mitochondrial membrane (OMM), a process mediated by specialised biogenesis factors known as insertases. These insertases are essential for the membrane integration of α-helical OMM proteins, which contain one or multiple hydrophobic transmembrane segments. While the general mechanisms of mitochondrial protein import are well established, recent research has shed light on the diversity and evolutionary conservation of OMM insertases across eukaryotic lineages. In <i>Saccharomyces cerevisiae</i>, the mitochondrial import (MIM) complex, composed of Mim1 and Mim2, facilitates the integration of various α-helical OMM proteins, often in cooperation with import receptors such as Tom20 and Tom70. In <i>Trypanosoma brucei</i>, the functional MIM counterpart pATOM36 performs a similar role despite lacking sequence and structural homology, reflecting a case of convergent evolution. In mammals, MTCH2 has emerged as the principal OMM insertase, with MTCH1 playing a secondary, partially redundant role. This review provides a comparative analysis of these insertases, emphasising their conserved functionality, species-specific adaptations, and mechanistic nuances.</p>\",\"PeriodicalId\":8885,\"journal\":{\"name\":\"Biological Chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Chemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1515/hsz-2025-0169\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1515/hsz-2025-0169","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Conserved function, divergent evolution: mitochondrial outer membrane insertases across eukaryotes.
Mitochondrial function relies heavily on the proper targeting and insertion of nuclear-encoded proteins into the outer mitochondrial membrane (OMM), a process mediated by specialised biogenesis factors known as insertases. These insertases are essential for the membrane integration of α-helical OMM proteins, which contain one or multiple hydrophobic transmembrane segments. While the general mechanisms of mitochondrial protein import are well established, recent research has shed light on the diversity and evolutionary conservation of OMM insertases across eukaryotic lineages. In Saccharomyces cerevisiae, the mitochondrial import (MIM) complex, composed of Mim1 and Mim2, facilitates the integration of various α-helical OMM proteins, often in cooperation with import receptors such as Tom20 and Tom70. In Trypanosoma brucei, the functional MIM counterpart pATOM36 performs a similar role despite lacking sequence and structural homology, reflecting a case of convergent evolution. In mammals, MTCH2 has emerged as the principal OMM insertase, with MTCH1 playing a secondary, partially redundant role. This review provides a comparative analysis of these insertases, emphasising their conserved functionality, species-specific adaptations, and mechanistic nuances.
期刊介绍:
Biological Chemistry keeps you up-to-date with all new developments in the molecular life sciences. In addition to original research reports, authoritative reviews written by leading researchers in the field keep you informed about the latest advances in the molecular life sciences. Rapid, yet rigorous reviewing ensures fast access to recent research results of exceptional significance in the biological sciences. Papers are published in a "Just Accepted" format within approx.72 hours of acceptance.