内在无序蛋白脂质辅助转运的热力学和动力学分析。

IF 2.2 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Biophysical chemistry Pub Date : 2025-11-01 Epub Date: 2025-08-05 DOI:10.1016/j.bpc.2025.107504
Carmelo La Rosa
{"title":"内在无序蛋白脂质辅助转运的热力学和动力学分析。","authors":"Carmelo La Rosa","doi":"10.1016/j.bpc.2025.107504","DOIUrl":null,"url":null,"abstract":"<p><p>Intrinsically disordered proteins (IDPs) are implicated in numerous neurodegenerative diseases, including Alzheimer's, Parkinson's, and type 2 diabetes. Although the amyloid and toxic oligomer hypotheses have provided significant molecular insights into these diseases, they are incomplete in fully explaining the complexity of the observed phenomena. In this study, we propose a new quantitative hypothesis, the lipid-chaperone hypothesis, which postulates a central role for the interaction between IDPs and lipids in the pathogenesis of these diseases. The resulting lipid-protein complex facilitate protein transfer into the cell membrane and the subsequent formation of pores, compromising cellular integrity. To experimentally test this hypothesis, we developed a mathematical model describing the kinetics of pore formation. The model was calibrated using experimental data and allowed us to estimate the kinetic constants and Gibbs free energy associated with the formation of the lipid-protein complex. These results support the hypothesis that the interaction between IDPs and lipids is a crucial event in the pathogenesis of IDP-related diseases and suggest that modulating this interaction could represent a promising therapeutic strategy.</p>","PeriodicalId":8979,"journal":{"name":"Biophysical chemistry","volume":"326 ","pages":"107504"},"PeriodicalIF":2.2000,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermodynamics and kinetics analysis of lipid-assisted transport of intrinsically disorder proteins.\",\"authors\":\"Carmelo La Rosa\",\"doi\":\"10.1016/j.bpc.2025.107504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Intrinsically disordered proteins (IDPs) are implicated in numerous neurodegenerative diseases, including Alzheimer's, Parkinson's, and type 2 diabetes. Although the amyloid and toxic oligomer hypotheses have provided significant molecular insights into these diseases, they are incomplete in fully explaining the complexity of the observed phenomena. In this study, we propose a new quantitative hypothesis, the lipid-chaperone hypothesis, which postulates a central role for the interaction between IDPs and lipids in the pathogenesis of these diseases. The resulting lipid-protein complex facilitate protein transfer into the cell membrane and the subsequent formation of pores, compromising cellular integrity. To experimentally test this hypothesis, we developed a mathematical model describing the kinetics of pore formation. The model was calibrated using experimental data and allowed us to estimate the kinetic constants and Gibbs free energy associated with the formation of the lipid-protein complex. These results support the hypothesis that the interaction between IDPs and lipids is a crucial event in the pathogenesis of IDP-related diseases and suggest that modulating this interaction could represent a promising therapeutic strategy.</p>\",\"PeriodicalId\":8979,\"journal\":{\"name\":\"Biophysical chemistry\",\"volume\":\"326 \",\"pages\":\"107504\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysical chemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.bpc.2025.107504\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bpc.2025.107504","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

内在无序蛋白(IDPs)与许多神经退行性疾病有关,包括阿尔茨海默病、帕金森病和2型糖尿病。尽管淀粉样蛋白和毒性低聚物假说为这些疾病提供了重要的分子见解,但它们在完全解释所观察到的现象的复杂性方面是不完整的。在这项研究中,我们提出了一个新的定量假设,即脂质伴侣假说,该假说假设IDPs和脂质之间的相互作用在这些疾病的发病机制中起核心作用。由此产生的脂蛋白复合物促进蛋白质转移到细胞膜和随后形成的毛孔,损害细胞的完整性。为了实验验证这一假设,我们建立了一个描述孔隙形成动力学的数学模型。该模型使用实验数据进行校准,使我们能够估计与脂蛋白复合物形成相关的动力学常数和吉布斯自由能。这些结果支持了idp和脂质之间的相互作用是idp相关疾病发病机制中一个关键事件的假设,并表明调节这种相互作用可能代表一种有希望的治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermodynamics and kinetics analysis of lipid-assisted transport of intrinsically disorder proteins.

Intrinsically disordered proteins (IDPs) are implicated in numerous neurodegenerative diseases, including Alzheimer's, Parkinson's, and type 2 diabetes. Although the amyloid and toxic oligomer hypotheses have provided significant molecular insights into these diseases, they are incomplete in fully explaining the complexity of the observed phenomena. In this study, we propose a new quantitative hypothesis, the lipid-chaperone hypothesis, which postulates a central role for the interaction between IDPs and lipids in the pathogenesis of these diseases. The resulting lipid-protein complex facilitate protein transfer into the cell membrane and the subsequent formation of pores, compromising cellular integrity. To experimentally test this hypothesis, we developed a mathematical model describing the kinetics of pore formation. The model was calibrated using experimental data and allowed us to estimate the kinetic constants and Gibbs free energy associated with the formation of the lipid-protein complex. These results support the hypothesis that the interaction between IDPs and lipids is a crucial event in the pathogenesis of IDP-related diseases and suggest that modulating this interaction could represent a promising therapeutic strategy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biophysical chemistry
Biophysical chemistry 生物-生化与分子生物学
CiteScore
6.10
自引率
10.50%
发文量
121
审稿时长
20 days
期刊介绍: Biophysical Chemistry publishes original work and reviews in the areas of chemistry and physics directly impacting biological phenomena. Quantitative analysis of the properties of biological macromolecules, biologically active molecules, macromolecular assemblies and cell components in terms of kinetics, thermodynamics, spatio-temporal organization, NMR and X-ray structural biology, as well as single-molecule detection represent a major focus of the journal. Theoretical and computational treatments of biomacromolecular systems, macromolecular interactions, regulatory control and systems biology are also of interest to the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信