Keaton L. Mertz, Lia R. Serrano, Pavel Sinitcyn* and Joshua J. Coon*,
{"title":"数据独立采集中MS/MS产品前体质量的动态四极选择。","authors":"Keaton L. Mertz, Lia R. Serrano, Pavel Sinitcyn* and Joshua J. Coon*, ","doi":"10.1021/jasms.5c00110","DOIUrl":null,"url":null,"abstract":"<p >Data-independent acquisition (DIA) mass spectrometry facilitates high-throughput, reproducible bottom-up proteomic analyses. Typically, DIA methods coselect multiple precursor ions within a wide selection window. These precursors are simultaneously fragmented, superimposing the product ion signals into a complex chimeric spectrum. A method for varying the quadrupole selection width over the ion accumulation period is described. This method couples the intensity of a product ion to the mass of its precursor ion. By overlapping consecutive selection windows, scan-to-scan product ion intensity profiles can be used to infer precursor mass. We assess the method’s sensitivity to quadrupole width, accumulation time, and mass-to-charge range using internal fluoranthene calibrant and FlexMix calibration solution with Q-Orbitrap configured mass analyzers. Additionally, we explore usability of the described technique on a tryptic-digest monoclonal antibody sample, including both direct infusion and liquid chromatography of the sample. With direct infusion, product ions from two precursors separated by 1 thomson (Th) are resolved with this method using 10 Th windows with 5 Th overlap. The product ions are associated within 0.3 Th of their respective precursor ion’s <i>m</i>/<i>z</i>. Therefore, product ion spectra have a precursor ion <i>m</i>/<i>z</i> resolving power of ∼33.</p>","PeriodicalId":672,"journal":{"name":"Journal of the American Society for Mass Spectrometry","volume":"36 9","pages":"1869–1876"},"PeriodicalIF":2.7000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic Quadrupole Selection to Associate Precursor Masses with MS/MS Products in Data-Independent Acquisition\",\"authors\":\"Keaton L. Mertz, Lia R. Serrano, Pavel Sinitcyn* and Joshua J. Coon*, \",\"doi\":\"10.1021/jasms.5c00110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Data-independent acquisition (DIA) mass spectrometry facilitates high-throughput, reproducible bottom-up proteomic analyses. Typically, DIA methods coselect multiple precursor ions within a wide selection window. These precursors are simultaneously fragmented, superimposing the product ion signals into a complex chimeric spectrum. A method for varying the quadrupole selection width over the ion accumulation period is described. This method couples the intensity of a product ion to the mass of its precursor ion. By overlapping consecutive selection windows, scan-to-scan product ion intensity profiles can be used to infer precursor mass. We assess the method’s sensitivity to quadrupole width, accumulation time, and mass-to-charge range using internal fluoranthene calibrant and FlexMix calibration solution with Q-Orbitrap configured mass analyzers. Additionally, we explore usability of the described technique on a tryptic-digest monoclonal antibody sample, including both direct infusion and liquid chromatography of the sample. With direct infusion, product ions from two precursors separated by 1 thomson (Th) are resolved with this method using 10 Th windows with 5 Th overlap. The product ions are associated within 0.3 Th of their respective precursor ion’s <i>m</i>/<i>z</i>. Therefore, product ion spectra have a precursor ion <i>m</i>/<i>z</i> resolving power of ∼33.</p>\",\"PeriodicalId\":672,\"journal\":{\"name\":\"Journal of the American Society for Mass Spectrometry\",\"volume\":\"36 9\",\"pages\":\"1869–1876\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Society for Mass Spectrometry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/jasms.5c00110\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Society for Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jasms.5c00110","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Dynamic Quadrupole Selection to Associate Precursor Masses with MS/MS Products in Data-Independent Acquisition
Data-independent acquisition (DIA) mass spectrometry facilitates high-throughput, reproducible bottom-up proteomic analyses. Typically, DIA methods coselect multiple precursor ions within a wide selection window. These precursors are simultaneously fragmented, superimposing the product ion signals into a complex chimeric spectrum. A method for varying the quadrupole selection width over the ion accumulation period is described. This method couples the intensity of a product ion to the mass of its precursor ion. By overlapping consecutive selection windows, scan-to-scan product ion intensity profiles can be used to infer precursor mass. We assess the method’s sensitivity to quadrupole width, accumulation time, and mass-to-charge range using internal fluoranthene calibrant and FlexMix calibration solution with Q-Orbitrap configured mass analyzers. Additionally, we explore usability of the described technique on a tryptic-digest monoclonal antibody sample, including both direct infusion and liquid chromatography of the sample. With direct infusion, product ions from two precursors separated by 1 thomson (Th) are resolved with this method using 10 Th windows with 5 Th overlap. The product ions are associated within 0.3 Th of their respective precursor ion’s m/z. Therefore, product ion spectra have a precursor ion m/z resolving power of ∼33.
期刊介绍:
The Journal of the American Society for Mass Spectrometry presents research papers covering all aspects of mass spectrometry, incorporating coverage of fields of scientific inquiry in which mass spectrometry can play a role.
Comprehensive in scope, the journal publishes papers on both fundamentals and applications of mass spectrometry. Fundamental subjects include instrumentation principles, design, and demonstration, structures and chemical properties of gas-phase ions, studies of thermodynamic properties, ion spectroscopy, chemical kinetics, mechanisms of ionization, theories of ion fragmentation, cluster ions, and potential energy surfaces. In addition to full papers, the journal offers Communications, Application Notes, and Accounts and Perspectives