{"title":"单细胞转录组分析揭示了母细胞异质性,并确定了t(8;21)急性髓性白血病的新治疗靶点IKZF2。","authors":"Yu Liu, Wenbing Liu, Yihan Mei, Qianqian Huang, Xiaoyu Liu, Chengcai Guo, Manling Chen, Junli Mou, Shangshang Wang, Wanqing Xie, Zheng Tian, Kejing Tang, Haiyan Xing, Ying Wang, Hui Wei, Runxia Gu, Qing Rao, Min Wang, Shaowei Qiu, Jianxiang Wang","doi":"10.1111/bjh.70077","DOIUrl":null,"url":null,"abstract":"<p><p>The t(8;21)(q22;q22) translocation is one of the most recurrent cytogenetic aberrations in acute myeloid leukaemia (AML). While most patients achieve complete remission, approximately 40% of them still relapse. Early identification and elimination of leukaemia clones with relapse potential could improve prognosis for t(8;21) AML patients. Here, through single-cell RNA sequencing, we characterized the intra-tumoral heterogeneity of t(8;21) AML and identified haematopoietic stem cell (HSC)-like subset as the most quiescent and primitive subgroup among all leukaemia cell populations. Further investigations revealed IKZF2 as the master regulator for HSC-like subset. Notably, IKZF2 was upregulated in t(8;21) AML compared with other AML subtypes and was specifically targeted by AML1-ETO. Using primary samples and mouse models, we verified the high enrichment of IKZF2 in primitive and quiescent leukaemic cells. Moreover, IKZF2 knockout hindered the accumulation of aberrant stem cells driven by AML1-ETO and promoted cellular differentiation both in vitro and in vivo. These facilitate a better understanding of the leukaemia cell heterogeneity in t(8;21) AML and unveil IKZF2 as a potential target for improving current treatment strategies.</p>","PeriodicalId":135,"journal":{"name":"British Journal of Haematology","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single-cell transcriptome profiling reveals blast cell heterogeneity and identifies novel therapeutic target IKZF2 in t(8;21) acute myeloid leukaemia.\",\"authors\":\"Yu Liu, Wenbing Liu, Yihan Mei, Qianqian Huang, Xiaoyu Liu, Chengcai Guo, Manling Chen, Junli Mou, Shangshang Wang, Wanqing Xie, Zheng Tian, Kejing Tang, Haiyan Xing, Ying Wang, Hui Wei, Runxia Gu, Qing Rao, Min Wang, Shaowei Qiu, Jianxiang Wang\",\"doi\":\"10.1111/bjh.70077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The t(8;21)(q22;q22) translocation is one of the most recurrent cytogenetic aberrations in acute myeloid leukaemia (AML). While most patients achieve complete remission, approximately 40% of them still relapse. Early identification and elimination of leukaemia clones with relapse potential could improve prognosis for t(8;21) AML patients. Here, through single-cell RNA sequencing, we characterized the intra-tumoral heterogeneity of t(8;21) AML and identified haematopoietic stem cell (HSC)-like subset as the most quiescent and primitive subgroup among all leukaemia cell populations. Further investigations revealed IKZF2 as the master regulator for HSC-like subset. Notably, IKZF2 was upregulated in t(8;21) AML compared with other AML subtypes and was specifically targeted by AML1-ETO. Using primary samples and mouse models, we verified the high enrichment of IKZF2 in primitive and quiescent leukaemic cells. Moreover, IKZF2 knockout hindered the accumulation of aberrant stem cells driven by AML1-ETO and promoted cellular differentiation both in vitro and in vivo. These facilitate a better understanding of the leukaemia cell heterogeneity in t(8;21) AML and unveil IKZF2 as a potential target for improving current treatment strategies.</p>\",\"PeriodicalId\":135,\"journal\":{\"name\":\"British Journal of Haematology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"British Journal of Haematology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/bjh.70077\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Haematology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/bjh.70077","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
Single-cell transcriptome profiling reveals blast cell heterogeneity and identifies novel therapeutic target IKZF2 in t(8;21) acute myeloid leukaemia.
The t(8;21)(q22;q22) translocation is one of the most recurrent cytogenetic aberrations in acute myeloid leukaemia (AML). While most patients achieve complete remission, approximately 40% of them still relapse. Early identification and elimination of leukaemia clones with relapse potential could improve prognosis for t(8;21) AML patients. Here, through single-cell RNA sequencing, we characterized the intra-tumoral heterogeneity of t(8;21) AML and identified haematopoietic stem cell (HSC)-like subset as the most quiescent and primitive subgroup among all leukaemia cell populations. Further investigations revealed IKZF2 as the master regulator for HSC-like subset. Notably, IKZF2 was upregulated in t(8;21) AML compared with other AML subtypes and was specifically targeted by AML1-ETO. Using primary samples and mouse models, we verified the high enrichment of IKZF2 in primitive and quiescent leukaemic cells. Moreover, IKZF2 knockout hindered the accumulation of aberrant stem cells driven by AML1-ETO and promoted cellular differentiation both in vitro and in vivo. These facilitate a better understanding of the leukaemia cell heterogeneity in t(8;21) AML and unveil IKZF2 as a potential target for improving current treatment strategies.
期刊介绍:
The British Journal of Haematology publishes original research papers in clinical, laboratory and experimental haematology. The Journal also features annotations, reviews, short reports, images in haematology and Letters to the Editor.