界面置换策略对SiC增强铝基复合材料强度和延性的协同作用

IF 12.8 1区 材料科学 Q1 ENGINEERING, MECHANICAL
Yanzhi Peng , Min Song , Caiju Li , Zunyan Xu , Li Fu , Liyuan Liu , Liang Liu , Xiaofeng Chen , Jianhong Yi , Jürgen Eckert
{"title":"界面置换策略对SiC增强铝基复合材料强度和延性的协同作用","authors":"Yanzhi Peng ,&nbsp;Min Song ,&nbsp;Caiju Li ,&nbsp;Zunyan Xu ,&nbsp;Li Fu ,&nbsp;Liyuan Liu ,&nbsp;Liang Liu ,&nbsp;Xiaofeng Chen ,&nbsp;Jianhong Yi ,&nbsp;Jürgen Eckert","doi":"10.1016/j.ijplas.2025.104450","DOIUrl":null,"url":null,"abstract":"<div><div>Introducing intragranular reinforcements plays an important role in improving the strength and ductility of composites. However, it is still a challenge to regulate the distribution of reinforcements in Al matrix composites. In the present work, the surface of nano-SiC<sub>p</sub> coated by a thin layer of amorphous SiO<sub>2</sub> was realized through oxidation treatment to achieve interfacial replacement, which reduces the binding force between the particles by two orders of magnitude. This strategy realizes a uniform dispersion of the nanoparticles in the matrix. The results show that more than 60 % of the oxidized SiC particles (SiC<sub>op</sub>) are distributed inside the grains, while the amount of the raw SiC<sub>p</sub> without oxidation is only 35 %. The presence of an inter-diffusion amorphous interlayer improves the interface bonding between SiC<sub>op</sub> and the aluminum matrix. Due to this unique structure design, the SiC<sub>op</sub>/Al-11Si composites exhibit a simultaneous increase in strength and ductility. The yield strength, ultimate tensile strength and elongation to failure of 9 wt. % SiC<sub>op</sub>/Al-11Si are 273.4 ± 4.6 MPa, 400.8 ± 6.9 MPa and 6.8 ± 0.4 %, respectively. Altogether, this study provides a simple and feasible method for fabricating strong and ductile SiC<sub>p</sub>/Al matrix composites, and provides a conceptual framework for designing other ceramic particle-reinforced metal matrix composites.</div></div>","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"193 ","pages":"Article 104450"},"PeriodicalIF":12.8000,"publicationDate":"2025-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strength and ductility synergy of SiC reinforced aluminum matrix composites through interface replacement strategy\",\"authors\":\"Yanzhi Peng ,&nbsp;Min Song ,&nbsp;Caiju Li ,&nbsp;Zunyan Xu ,&nbsp;Li Fu ,&nbsp;Liyuan Liu ,&nbsp;Liang Liu ,&nbsp;Xiaofeng Chen ,&nbsp;Jianhong Yi ,&nbsp;Jürgen Eckert\",\"doi\":\"10.1016/j.ijplas.2025.104450\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Introducing intragranular reinforcements plays an important role in improving the strength and ductility of composites. However, it is still a challenge to regulate the distribution of reinforcements in Al matrix composites. In the present work, the surface of nano-SiC<sub>p</sub> coated by a thin layer of amorphous SiO<sub>2</sub> was realized through oxidation treatment to achieve interfacial replacement, which reduces the binding force between the particles by two orders of magnitude. This strategy realizes a uniform dispersion of the nanoparticles in the matrix. The results show that more than 60 % of the oxidized SiC particles (SiC<sub>op</sub>) are distributed inside the grains, while the amount of the raw SiC<sub>p</sub> without oxidation is only 35 %. The presence of an inter-diffusion amorphous interlayer improves the interface bonding between SiC<sub>op</sub> and the aluminum matrix. Due to this unique structure design, the SiC<sub>op</sub>/Al-11Si composites exhibit a simultaneous increase in strength and ductility. The yield strength, ultimate tensile strength and elongation to failure of 9 wt. % SiC<sub>op</sub>/Al-11Si are 273.4 ± 4.6 MPa, 400.8 ± 6.9 MPa and 6.8 ± 0.4 %, respectively. Altogether, this study provides a simple and feasible method for fabricating strong and ductile SiC<sub>p</sub>/Al matrix composites, and provides a conceptual framework for designing other ceramic particle-reinforced metal matrix composites.</div></div>\",\"PeriodicalId\":340,\"journal\":{\"name\":\"International Journal of Plasticity\",\"volume\":\"193 \",\"pages\":\"Article 104450\"},\"PeriodicalIF\":12.8000,\"publicationDate\":\"2025-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Plasticity\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0749641925002098\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Plasticity","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0749641925002098","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

引入晶内增强材料对提高复合材料的强度和塑性具有重要作用。然而,如何调节增强材料在Al基复合材料中的分布仍然是一个挑战。在本工作中,通过氧化处理,在纳米sicp表面包覆一层薄薄的非晶SiO2,实现了界面置换,使颗粒间的结合力降低了两个数量级。该策略实现了纳米颗粒在基质中的均匀分散。结果表明:60%以上的氧化SiC颗粒(SiCop)分布在晶粒内部,而未氧化的SiCp仅占35%;扩散间非晶层的存在改善了SiCop与铝基体之间的界面结合。由于这种独特的结构设计,SiCop/Al-11Si复合材料的强度和延展性同时提高。9 wt.% SiCop/Al-11Si合金的屈服强度、极限抗拉强度和断裂伸长率分别为273.4±4.6 MPa、4000.8±6.9 MPa和6.8±0.4%。总之,本研究为制备强韧性SiCp/Al基复合材料提供了一种简单可行的方法,并为设计其他陶瓷颗粒增强金属基复合材料提供了概念框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Strength and ductility synergy of SiC reinforced aluminum matrix composites through interface replacement strategy

Strength and ductility synergy of SiC reinforced aluminum matrix composites through interface replacement strategy

Strength and ductility synergy of SiC reinforced aluminum matrix composites through interface replacement strategy
Introducing intragranular reinforcements plays an important role in improving the strength and ductility of composites. However, it is still a challenge to regulate the distribution of reinforcements in Al matrix composites. In the present work, the surface of nano-SiCp coated by a thin layer of amorphous SiO2 was realized through oxidation treatment to achieve interfacial replacement, which reduces the binding force between the particles by two orders of magnitude. This strategy realizes a uniform dispersion of the nanoparticles in the matrix. The results show that more than 60 % of the oxidized SiC particles (SiCop) are distributed inside the grains, while the amount of the raw SiCp without oxidation is only 35 %. The presence of an inter-diffusion amorphous interlayer improves the interface bonding between SiCop and the aluminum matrix. Due to this unique structure design, the SiCop/Al-11Si composites exhibit a simultaneous increase in strength and ductility. The yield strength, ultimate tensile strength and elongation to failure of 9 wt. % SiCop/Al-11Si are 273.4 ± 4.6 MPa, 400.8 ± 6.9 MPa and 6.8 ± 0.4 %, respectively. Altogether, this study provides a simple and feasible method for fabricating strong and ductile SiCp/Al matrix composites, and provides a conceptual framework for designing other ceramic particle-reinforced metal matrix composites.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Plasticity
International Journal of Plasticity 工程技术-材料科学:综合
CiteScore
15.30
自引率
26.50%
发文量
256
审稿时长
46 days
期刊介绍: International Journal of Plasticity aims to present original research encompassing all facets of plastic deformation, damage, and fracture behavior in both isotropic and anisotropic solids. This includes exploring the thermodynamics of plasticity and fracture, continuum theory, and macroscopic as well as microscopic phenomena. Topics of interest span the plastic behavior of single crystals and polycrystalline metals, ceramics, rocks, soils, composites, nanocrystalline and microelectronics materials, shape memory alloys, ferroelectric ceramics, thin films, and polymers. Additionally, the journal covers plasticity aspects of failure and fracture mechanics. Contributions involving significant experimental, numerical, or theoretical advancements that enhance the understanding of the plastic behavior of solids are particularly valued. Papers addressing the modeling of finite nonlinear elastic deformation, bearing similarities to the modeling of plastic deformation, are also welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信