Jie Gui,Tuo Chen,Minjing Dong,Zhengqi Liu,Hao Luo,James Tin-Yau Kwok,Yuan Yan Tang
{"title":"掩模图像建模中频率与注意力的协调探讨。","authors":"Jie Gui,Tuo Chen,Minjing Dong,Zhengqi Liu,Hao Luo,James Tin-Yau Kwok,Yuan Yan Tang","doi":"10.1109/tip.2025.3592555","DOIUrl":null,"url":null,"abstract":"Recently, masked image modeling (MIM), which learns visual representations by reconstructing the masked patches of an image, has dominated self-supervised learning in computer vision. However, the pre-training of MIM always takes massive time due to the large-scale data and large-size backbones. We mainly attribute it to the random patch masking in previous MIM works, which fails to leverage the crucial semantic information for effective visual representation learning. To tackle this issue, we propose the Frequency & Attention-driven Masking and Throwing Strategy (FAMT), which can extract semantic patches and reduce the number of training patches to boost model performance and training efficiency simultaneously. Specifically, FAMT utilizes the self-attention mechanism to extract semantic information from the image for masking during training in an unsupervised manner. However, attention alone could sometimes focus on inappropriate areas regarding the semantic information. Thus, we are motivated to incorporate the information from the frequency domain into the self-attention mechanism to derive the sampling weights for masking, which captures semantic patches for visual representation learning. Furthermore, we introduce a patch throwing strategy based on the derived sampling weights to reduce the training cost. FAMT can be seamlessly integrated as a plug-and-play module and surpasses previous works, e.g. reducing the training phase time by nearly 50% and improving the linear probing accuracy of MAE by 1.3% ∼ 3.9% across various datasets, including CIFAR-10/100, Tiny ImageNet, and ImageNet-1K. FAMT also demonstrates superior performance in downstream detection and segmentation tasks.","PeriodicalId":13217,"journal":{"name":"IEEE Transactions on Image Processing","volume":"80 1","pages":""},"PeriodicalIF":13.7000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the Coordination of Frequency and Attention in Masked Image Modeling.\",\"authors\":\"Jie Gui,Tuo Chen,Minjing Dong,Zhengqi Liu,Hao Luo,James Tin-Yau Kwok,Yuan Yan Tang\",\"doi\":\"10.1109/tip.2025.3592555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, masked image modeling (MIM), which learns visual representations by reconstructing the masked patches of an image, has dominated self-supervised learning in computer vision. However, the pre-training of MIM always takes massive time due to the large-scale data and large-size backbones. We mainly attribute it to the random patch masking in previous MIM works, which fails to leverage the crucial semantic information for effective visual representation learning. To tackle this issue, we propose the Frequency & Attention-driven Masking and Throwing Strategy (FAMT), which can extract semantic patches and reduce the number of training patches to boost model performance and training efficiency simultaneously. Specifically, FAMT utilizes the self-attention mechanism to extract semantic information from the image for masking during training in an unsupervised manner. However, attention alone could sometimes focus on inappropriate areas regarding the semantic information. Thus, we are motivated to incorporate the information from the frequency domain into the self-attention mechanism to derive the sampling weights for masking, which captures semantic patches for visual representation learning. Furthermore, we introduce a patch throwing strategy based on the derived sampling weights to reduce the training cost. FAMT can be seamlessly integrated as a plug-and-play module and surpasses previous works, e.g. reducing the training phase time by nearly 50% and improving the linear probing accuracy of MAE by 1.3% ∼ 3.9% across various datasets, including CIFAR-10/100, Tiny ImageNet, and ImageNet-1K. FAMT also demonstrates superior performance in downstream detection and segmentation tasks.\",\"PeriodicalId\":13217,\"journal\":{\"name\":\"IEEE Transactions on Image Processing\",\"volume\":\"80 1\",\"pages\":\"\"},\"PeriodicalIF\":13.7000,\"publicationDate\":\"2025-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Image Processing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/tip.2025.3592555\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Image Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/tip.2025.3592555","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Exploring the Coordination of Frequency and Attention in Masked Image Modeling.
Recently, masked image modeling (MIM), which learns visual representations by reconstructing the masked patches of an image, has dominated self-supervised learning in computer vision. However, the pre-training of MIM always takes massive time due to the large-scale data and large-size backbones. We mainly attribute it to the random patch masking in previous MIM works, which fails to leverage the crucial semantic information for effective visual representation learning. To tackle this issue, we propose the Frequency & Attention-driven Masking and Throwing Strategy (FAMT), which can extract semantic patches and reduce the number of training patches to boost model performance and training efficiency simultaneously. Specifically, FAMT utilizes the self-attention mechanism to extract semantic information from the image for masking during training in an unsupervised manner. However, attention alone could sometimes focus on inappropriate areas regarding the semantic information. Thus, we are motivated to incorporate the information from the frequency domain into the self-attention mechanism to derive the sampling weights for masking, which captures semantic patches for visual representation learning. Furthermore, we introduce a patch throwing strategy based on the derived sampling weights to reduce the training cost. FAMT can be seamlessly integrated as a plug-and-play module and surpasses previous works, e.g. reducing the training phase time by nearly 50% and improving the linear probing accuracy of MAE by 1.3% ∼ 3.9% across various datasets, including CIFAR-10/100, Tiny ImageNet, and ImageNet-1K. FAMT also demonstrates superior performance in downstream detection and segmentation tasks.
期刊介绍:
The IEEE Transactions on Image Processing delves into groundbreaking theories, algorithms, and structures concerning the generation, acquisition, manipulation, transmission, scrutiny, and presentation of images, video, and multidimensional signals across diverse applications. Topics span mathematical, statistical, and perceptual aspects, encompassing modeling, representation, formation, coding, filtering, enhancement, restoration, rendering, halftoning, search, and analysis of images, video, and multidimensional signals. Pertinent applications range from image and video communications to electronic imaging, biomedical imaging, image and video systems, and remote sensing.