Arvind Channarayapatna Srinivasa, Seema S Bhat, Dikendra Baduwal, Zheng Ting Jordan Sim, Shamshekhar S Patil, Ashwin Amarapur, K N Bhanu Prakash
{"title":"GAN-MRI增强多器官MRI分割:深度学习视角。","authors":"Arvind Channarayapatna Srinivasa, Seema S Bhat, Dikendra Baduwal, Zheng Ting Jordan Sim, Shamshekhar S Patil, Ashwin Amarapur, K N Bhanu Prakash","doi":"10.1007/s12194-025-00938-7","DOIUrl":null,"url":null,"abstract":"<p><p>Clinical magnetic resonance imaging (MRI) is a high-resolution tool widely used for detailed anatomical imaging. However, prolonged scan times often lead to motion artefacts and patient discomfort. Fast acquisition techniques can reduce scan times but often produce noisy, low-contrast images, compromising segmentation accuracy essential for diagnosis and treatment planning. To address these limitations, we developed an end-to-end framework that incorporates BIDS-based data organiser and anonymizer, a GAN-based MR image enhancement model (GAN-MRI), AssemblyNet for brain region segmentation, and an attention-residual U-Net with Guided loss for abdominal and thigh segmentation. Thirty brain scans (5,400 slices) and 32 abdominal (1,920 slices) and 55 thigh scans (2,200 slices) acquired from multiple MRI scanners (GE, Siemens, Toshiba) underwent evaluation. Image quality improved significantly, with SNR and CNR for brain scans increasing from 28.44 to 42.92 (p < 0.001) and 11.88 to 18.03 (p < 0.001), respectively. Abdominal scans exhibited SNR increases from 35.30 to 50.24 (p < 0.001) and CNR from 10,290.93 to 93,767.22 (p < 0.001). Double-blind evaluations highlighted improved visualisations of anatomical structures and bias field correction. Segmentation performance improved substantially in the thigh (muscle: + 21%, IMAT: + 9%) and abdominal regions (SSAT: + 1%, DSAT: + 2%, VAT: + 12%), while brain segmentation metrics remained largely stable, reflecting the robustness of the baseline model. Proposed framework is designed to handle data from multiple anatomies with variations from different MRI scanners and centres by enhancing MRI scan and improving segmentation accuracy, diagnostic precision and treatment planning while reducing scan times and maintaining patient comfort.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GAN-MRI enhanced multi-organ MRI segmentation: a deep learning perspective.\",\"authors\":\"Arvind Channarayapatna Srinivasa, Seema S Bhat, Dikendra Baduwal, Zheng Ting Jordan Sim, Shamshekhar S Patil, Ashwin Amarapur, K N Bhanu Prakash\",\"doi\":\"10.1007/s12194-025-00938-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Clinical magnetic resonance imaging (MRI) is a high-resolution tool widely used for detailed anatomical imaging. However, prolonged scan times often lead to motion artefacts and patient discomfort. Fast acquisition techniques can reduce scan times but often produce noisy, low-contrast images, compromising segmentation accuracy essential for diagnosis and treatment planning. To address these limitations, we developed an end-to-end framework that incorporates BIDS-based data organiser and anonymizer, a GAN-based MR image enhancement model (GAN-MRI), AssemblyNet for brain region segmentation, and an attention-residual U-Net with Guided loss for abdominal and thigh segmentation. Thirty brain scans (5,400 slices) and 32 abdominal (1,920 slices) and 55 thigh scans (2,200 slices) acquired from multiple MRI scanners (GE, Siemens, Toshiba) underwent evaluation. Image quality improved significantly, with SNR and CNR for brain scans increasing from 28.44 to 42.92 (p < 0.001) and 11.88 to 18.03 (p < 0.001), respectively. Abdominal scans exhibited SNR increases from 35.30 to 50.24 (p < 0.001) and CNR from 10,290.93 to 93,767.22 (p < 0.001). Double-blind evaluations highlighted improved visualisations of anatomical structures and bias field correction. Segmentation performance improved substantially in the thigh (muscle: + 21%, IMAT: + 9%) and abdominal regions (SSAT: + 1%, DSAT: + 2%, VAT: + 12%), while brain segmentation metrics remained largely stable, reflecting the robustness of the baseline model. Proposed framework is designed to handle data from multiple anatomies with variations from different MRI scanners and centres by enhancing MRI scan and improving segmentation accuracy, diagnostic precision and treatment planning while reducing scan times and maintaining patient comfort.</p>\",\"PeriodicalId\":46252,\"journal\":{\"name\":\"Radiological Physics and Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiological Physics and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12194-025-00938-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiological Physics and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12194-025-00938-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
GAN-MRI enhanced multi-organ MRI segmentation: a deep learning perspective.
Clinical magnetic resonance imaging (MRI) is a high-resolution tool widely used for detailed anatomical imaging. However, prolonged scan times often lead to motion artefacts and patient discomfort. Fast acquisition techniques can reduce scan times but often produce noisy, low-contrast images, compromising segmentation accuracy essential for diagnosis and treatment planning. To address these limitations, we developed an end-to-end framework that incorporates BIDS-based data organiser and anonymizer, a GAN-based MR image enhancement model (GAN-MRI), AssemblyNet for brain region segmentation, and an attention-residual U-Net with Guided loss for abdominal and thigh segmentation. Thirty brain scans (5,400 slices) and 32 abdominal (1,920 slices) and 55 thigh scans (2,200 slices) acquired from multiple MRI scanners (GE, Siemens, Toshiba) underwent evaluation. Image quality improved significantly, with SNR and CNR for brain scans increasing from 28.44 to 42.92 (p < 0.001) and 11.88 to 18.03 (p < 0.001), respectively. Abdominal scans exhibited SNR increases from 35.30 to 50.24 (p < 0.001) and CNR from 10,290.93 to 93,767.22 (p < 0.001). Double-blind evaluations highlighted improved visualisations of anatomical structures and bias field correction. Segmentation performance improved substantially in the thigh (muscle: + 21%, IMAT: + 9%) and abdominal regions (SSAT: + 1%, DSAT: + 2%, VAT: + 12%), while brain segmentation metrics remained largely stable, reflecting the robustness of the baseline model. Proposed framework is designed to handle data from multiple anatomies with variations from different MRI scanners and centres by enhancing MRI scan and improving segmentation accuracy, diagnostic precision and treatment planning while reducing scan times and maintaining patient comfort.
期刊介绍:
The purpose of the journal Radiological Physics and Technology is to provide a forum for sharing new knowledge related to research and development in radiological science and technology, including medical physics and radiological technology in diagnostic radiology, nuclear medicine, and radiation therapy among many other radiological disciplines, as well as to contribute to progress and improvement in medical practice and patient health care.