Chen Miao, Zhenghao Zhang, Jiamin Chen, Daniel Rebibo, Haoran Wu, Sin-Hang Fung, Alfred Sze-Lok Cheng, Stephen Kwok-Wing Tsui, Sanju Sinha, Qin Cao, Kevin Y Yip
{"title":"从使用大型语言模型的文献中开发生物医学知识库的基础-系统评估。","authors":"Chen Miao, Zhenghao Zhang, Jiamin Chen, Daniel Rebibo, Haoran Wu, Sin-Hang Fung, Alfred Sze-Lok Cheng, Stephen Kwok-Wing Tsui, Sanju Sinha, Qin Cao, Kevin Y Yip","doi":"10.1016/j.csbj.2025.07.042","DOIUrl":null,"url":null,"abstract":"<p><p>While large language models (LLMs) have shown promising capabilities in biomedical applications, measuring their reliability in knowledge extraction remains a challenge. We developed a benchmark to compare LLMs in 11 literature knowledge extraction tasks that are foundational to automatic knowledgebase development, with or without task-specific examples supplied. We found large variation across the LLMs' performance, depending on the level of technical specialization, difficulty of tasks, scattering of original information, and format and terminology standardization requirements. We also found that asking the LLMs to provide the source text behind their answers is useful for overcoming some key challenges, but that specifying this requirement in the prompt is difficult.</p>","PeriodicalId":10715,"journal":{"name":"Computational and structural biotechnology journal","volume":"27 ","pages":"3299-3306"},"PeriodicalIF":4.1000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12329539/pdf/","citationCount":"0","resultStr":"{\"title\":\"Developing foundations for biomedical knowledgebases from literature using large language models - A systematic assessment.\",\"authors\":\"Chen Miao, Zhenghao Zhang, Jiamin Chen, Daniel Rebibo, Haoran Wu, Sin-Hang Fung, Alfred Sze-Lok Cheng, Stephen Kwok-Wing Tsui, Sanju Sinha, Qin Cao, Kevin Y Yip\",\"doi\":\"10.1016/j.csbj.2025.07.042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>While large language models (LLMs) have shown promising capabilities in biomedical applications, measuring their reliability in knowledge extraction remains a challenge. We developed a benchmark to compare LLMs in 11 literature knowledge extraction tasks that are foundational to automatic knowledgebase development, with or without task-specific examples supplied. We found large variation across the LLMs' performance, depending on the level of technical specialization, difficulty of tasks, scattering of original information, and format and terminology standardization requirements. We also found that asking the LLMs to provide the source text behind their answers is useful for overcoming some key challenges, but that specifying this requirement in the prompt is difficult.</p>\",\"PeriodicalId\":10715,\"journal\":{\"name\":\"Computational and structural biotechnology journal\",\"volume\":\"27 \",\"pages\":\"3299-3306\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12329539/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and structural biotechnology journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.csbj.2025.07.042\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and structural biotechnology journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.csbj.2025.07.042","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Developing foundations for biomedical knowledgebases from literature using large language models - A systematic assessment.
While large language models (LLMs) have shown promising capabilities in biomedical applications, measuring their reliability in knowledge extraction remains a challenge. We developed a benchmark to compare LLMs in 11 literature knowledge extraction tasks that are foundational to automatic knowledgebase development, with or without task-specific examples supplied. We found large variation across the LLMs' performance, depending on the level of technical specialization, difficulty of tasks, scattering of original information, and format and terminology standardization requirements. We also found that asking the LLMs to provide the source text behind their answers is useful for overcoming some key challenges, but that specifying this requirement in the prompt is difficult.
期刊介绍:
Computational and Structural Biotechnology Journal (CSBJ) is an online gold open access journal publishing research articles and reviews after full peer review. All articles are published, without barriers to access, immediately upon acceptance. The journal places a strong emphasis on functional and mechanistic understanding of how molecular components in a biological process work together through the application of computational methods. Structural data may provide such insights, but they are not a pre-requisite for publication in the journal. Specific areas of interest include, but are not limited to:
Structure and function of proteins, nucleic acids and other macromolecules
Structure and function of multi-component complexes
Protein folding, processing and degradation
Enzymology
Computational and structural studies of plant systems
Microbial Informatics
Genomics
Proteomics
Metabolomics
Algorithms and Hypothesis in Bioinformatics
Mathematical and Theoretical Biology
Computational Chemistry and Drug Discovery
Microscopy and Molecular Imaging
Nanotechnology
Systems and Synthetic Biology