从使用大型语言模型的文献中开发生物医学知识库的基础-系统评估。

IF 4.1 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Computational and structural biotechnology journal Pub Date : 2025-07-24 eCollection Date: 2025-01-01 DOI:10.1016/j.csbj.2025.07.042
Chen Miao, Zhenghao Zhang, Jiamin Chen, Daniel Rebibo, Haoran Wu, Sin-Hang Fung, Alfred Sze-Lok Cheng, Stephen Kwok-Wing Tsui, Sanju Sinha, Qin Cao, Kevin Y Yip
{"title":"从使用大型语言模型的文献中开发生物医学知识库的基础-系统评估。","authors":"Chen Miao, Zhenghao Zhang, Jiamin Chen, Daniel Rebibo, Haoran Wu, Sin-Hang Fung, Alfred Sze-Lok Cheng, Stephen Kwok-Wing Tsui, Sanju Sinha, Qin Cao, Kevin Y Yip","doi":"10.1016/j.csbj.2025.07.042","DOIUrl":null,"url":null,"abstract":"<p><p>While large language models (LLMs) have shown promising capabilities in biomedical applications, measuring their reliability in knowledge extraction remains a challenge. We developed a benchmark to compare LLMs in 11 literature knowledge extraction tasks that are foundational to automatic knowledgebase development, with or without task-specific examples supplied. We found large variation across the LLMs' performance, depending on the level of technical specialization, difficulty of tasks, scattering of original information, and format and terminology standardization requirements. We also found that asking the LLMs to provide the source text behind their answers is useful for overcoming some key challenges, but that specifying this requirement in the prompt is difficult.</p>","PeriodicalId":10715,"journal":{"name":"Computational and structural biotechnology journal","volume":"27 ","pages":"3299-3306"},"PeriodicalIF":4.1000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12329539/pdf/","citationCount":"0","resultStr":"{\"title\":\"Developing foundations for biomedical knowledgebases from literature using large language models - A systematic assessment.\",\"authors\":\"Chen Miao, Zhenghao Zhang, Jiamin Chen, Daniel Rebibo, Haoran Wu, Sin-Hang Fung, Alfred Sze-Lok Cheng, Stephen Kwok-Wing Tsui, Sanju Sinha, Qin Cao, Kevin Y Yip\",\"doi\":\"10.1016/j.csbj.2025.07.042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>While large language models (LLMs) have shown promising capabilities in biomedical applications, measuring their reliability in knowledge extraction remains a challenge. We developed a benchmark to compare LLMs in 11 literature knowledge extraction tasks that are foundational to automatic knowledgebase development, with or without task-specific examples supplied. We found large variation across the LLMs' performance, depending on the level of technical specialization, difficulty of tasks, scattering of original information, and format and terminology standardization requirements. We also found that asking the LLMs to provide the source text behind their answers is useful for overcoming some key challenges, but that specifying this requirement in the prompt is difficult.</p>\",\"PeriodicalId\":10715,\"journal\":{\"name\":\"Computational and structural biotechnology journal\",\"volume\":\"27 \",\"pages\":\"3299-3306\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12329539/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and structural biotechnology journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.csbj.2025.07.042\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and structural biotechnology journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.csbj.2025.07.042","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

虽然大型语言模型(llm)在生物医学应用中表现出了很好的能力,但衡量它们在知识提取中的可靠性仍然是一个挑战。我们开发了一个基准来比较法学硕士在11个文献知识提取任务中的知识,这些任务是自动知识库开发的基础,有或没有提供特定于任务的示例。我们发现llm的表现存在很大差异,这取决于技术专业化水平、任务难度、原始信息的分散以及格式和术语标准化要求。我们还发现,要求法学硕士提供答案背后的源文本对于克服一些关键挑战是有用的,但是在提示中指定这个需求是困难的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Developing foundations for biomedical knowledgebases from literature using large language models - A systematic assessment.

While large language models (LLMs) have shown promising capabilities in biomedical applications, measuring their reliability in knowledge extraction remains a challenge. We developed a benchmark to compare LLMs in 11 literature knowledge extraction tasks that are foundational to automatic knowledgebase development, with or without task-specific examples supplied. We found large variation across the LLMs' performance, depending on the level of technical specialization, difficulty of tasks, scattering of original information, and format and terminology standardization requirements. We also found that asking the LLMs to provide the source text behind their answers is useful for overcoming some key challenges, but that specifying this requirement in the prompt is difficult.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational and structural biotechnology journal
Computational and structural biotechnology journal Biochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
9.30
自引率
3.30%
发文量
540
审稿时长
6 weeks
期刊介绍: Computational and Structural Biotechnology Journal (CSBJ) is an online gold open access journal publishing research articles and reviews after full peer review. All articles are published, without barriers to access, immediately upon acceptance. The journal places a strong emphasis on functional and mechanistic understanding of how molecular components in a biological process work together through the application of computational methods. Structural data may provide such insights, but they are not a pre-requisite for publication in the journal. Specific areas of interest include, but are not limited to: Structure and function of proteins, nucleic acids and other macromolecules Structure and function of multi-component complexes Protein folding, processing and degradation Enzymology Computational and structural studies of plant systems Microbial Informatics Genomics Proteomics Metabolomics Algorithms and Hypothesis in Bioinformatics Mathematical and Theoretical Biology Computational Chemistry and Drug Discovery Microscopy and Molecular Imaging Nanotechnology Systems and Synthetic Biology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信