Bang Lou, Hongzhou Liu, Weiyong Hong, Qingliang Yang, Hanbing Li, Gensheng Yang
{"title":"二氧化钛微球吸附分离fof1 - atp酶包埋色团的生物分子马达","authors":"Bang Lou, Hongzhou Liu, Weiyong Hong, Qingliang Yang, Hanbing Li, Gensheng Yang","doi":"10.1002/biot.70093","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The biomolecular motor F<sub>O</sub>F<sub>1</sub>-ATPase-embedded chromatophore, a biomolecular motor loaded into a lipid bilayer of chromatophores derived from biocells demonstrates significant potential for applications in various biomedical fields, such as targeted drug delivery within tumor microenvironments, biological tissue penetration, and biosensor detection. However, conventional purification strategies relying on gradient/ultracentrifugation remain hampered by prohibitive costs, technical complexity, and scalability constraints, critically limiting their biomedical translation. Here, we present a paradigm-shifting approach utilizing titanium dioxide (TiO<sub>2</sub>) microspheres for efficient chromatophore isolation via Lewis acid-base interactions. Through constructing chromatophore-TiO<sub>2</sub> complexes, we systematically investigated adsorption mechanisms using isotherm modeling and FTIR spectroscopy, revealing that 7.11%–8.84% of interfacial interactions originated from physisorption. This novel strategy achieved 93.3% ± 3.21% separation efficiency and 90.7% ± 5.77% recovery rates—surpassing conventional centrifugation by 2.1-fold in operational efficiency while maintaining chromatophore integrity. Crucially, the preserved bio functionality of FoF<sub>1</sub>-ATPase post-separation was validated through sustained proton gradient-driven ATP (adenosine triphosphate) synthesis. Our findings establish TiO<sub>2</sub>-based adsorption as a robust alternative for biomotor purification and elucidate fundamental principles governing nanobiointerfaces between inorganic matrices and membrane-embedded molecular machines. This work provides a universal platform adaptable for diverse biofilm-encapsulated agents, bridging critical gaps between laboratory-scale development and clinical-scale production of advanced bionanodevices.</p>\n </div>","PeriodicalId":134,"journal":{"name":"Biotechnology Journal","volume":"20 8","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adsorption and Separation of the Biomolecular Motors of FOF1-ATPase-Embedded Chromatophores Using Titanium Dioxide Microsphere\",\"authors\":\"Bang Lou, Hongzhou Liu, Weiyong Hong, Qingliang Yang, Hanbing Li, Gensheng Yang\",\"doi\":\"10.1002/biot.70093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The biomolecular motor F<sub>O</sub>F<sub>1</sub>-ATPase-embedded chromatophore, a biomolecular motor loaded into a lipid bilayer of chromatophores derived from biocells demonstrates significant potential for applications in various biomedical fields, such as targeted drug delivery within tumor microenvironments, biological tissue penetration, and biosensor detection. However, conventional purification strategies relying on gradient/ultracentrifugation remain hampered by prohibitive costs, technical complexity, and scalability constraints, critically limiting their biomedical translation. Here, we present a paradigm-shifting approach utilizing titanium dioxide (TiO<sub>2</sub>) microspheres for efficient chromatophore isolation via Lewis acid-base interactions. Through constructing chromatophore-TiO<sub>2</sub> complexes, we systematically investigated adsorption mechanisms using isotherm modeling and FTIR spectroscopy, revealing that 7.11%–8.84% of interfacial interactions originated from physisorption. This novel strategy achieved 93.3% ± 3.21% separation efficiency and 90.7% ± 5.77% recovery rates—surpassing conventional centrifugation by 2.1-fold in operational efficiency while maintaining chromatophore integrity. Crucially, the preserved bio functionality of FoF<sub>1</sub>-ATPase post-separation was validated through sustained proton gradient-driven ATP (adenosine triphosphate) synthesis. Our findings establish TiO<sub>2</sub>-based adsorption as a robust alternative for biomotor purification and elucidate fundamental principles governing nanobiointerfaces between inorganic matrices and membrane-embedded molecular machines. This work provides a universal platform adaptable for diverse biofilm-encapsulated agents, bridging critical gaps between laboratory-scale development and clinical-scale production of advanced bionanodevices.</p>\\n </div>\",\"PeriodicalId\":134,\"journal\":{\"name\":\"Biotechnology Journal\",\"volume\":\"20 8\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/biot.70093\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/biot.70093","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Adsorption and Separation of the Biomolecular Motors of FOF1-ATPase-Embedded Chromatophores Using Titanium Dioxide Microsphere
The biomolecular motor FOF1-ATPase-embedded chromatophore, a biomolecular motor loaded into a lipid bilayer of chromatophores derived from biocells demonstrates significant potential for applications in various biomedical fields, such as targeted drug delivery within tumor microenvironments, biological tissue penetration, and biosensor detection. However, conventional purification strategies relying on gradient/ultracentrifugation remain hampered by prohibitive costs, technical complexity, and scalability constraints, critically limiting their biomedical translation. Here, we present a paradigm-shifting approach utilizing titanium dioxide (TiO2) microspheres for efficient chromatophore isolation via Lewis acid-base interactions. Through constructing chromatophore-TiO2 complexes, we systematically investigated adsorption mechanisms using isotherm modeling and FTIR spectroscopy, revealing that 7.11%–8.84% of interfacial interactions originated from physisorption. This novel strategy achieved 93.3% ± 3.21% separation efficiency and 90.7% ± 5.77% recovery rates—surpassing conventional centrifugation by 2.1-fold in operational efficiency while maintaining chromatophore integrity. Crucially, the preserved bio functionality of FoF1-ATPase post-separation was validated through sustained proton gradient-driven ATP (adenosine triphosphate) synthesis. Our findings establish TiO2-based adsorption as a robust alternative for biomotor purification and elucidate fundamental principles governing nanobiointerfaces between inorganic matrices and membrane-embedded molecular machines. This work provides a universal platform adaptable for diverse biofilm-encapsulated agents, bridging critical gaps between laboratory-scale development and clinical-scale production of advanced bionanodevices.
Biotechnology JournalBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
8.90
自引率
2.10%
发文量
123
审稿时长
1.5 months
期刊介绍:
Biotechnology Journal (2019 Journal Citation Reports: 3.543) is fully comprehensive in its scope and publishes strictly peer-reviewed papers covering novel aspects and methods in all areas of biotechnology. Some issues are devoted to a special topic, providing the latest information on the most crucial areas of research and technological advances.
In addition to these special issues, the journal welcomes unsolicited submissions for primary research articles, such as Research Articles, Rapid Communications and Biotech Methods. BTJ also welcomes proposals of Review Articles - please send in a brief outline of the article and the senior author''s CV to the editorial office.
BTJ promotes a special emphasis on:
Systems Biotechnology
Synthetic Biology and Metabolic Engineering
Nanobiotechnology and Biomaterials
Tissue engineering, Regenerative Medicine and Stem cells
Gene Editing, Gene therapy and Immunotherapy
Omics technologies
Industrial Biotechnology, Biopharmaceuticals and Biocatalysis
Bioprocess engineering and Downstream processing
Plant Biotechnology
Biosafety, Biotech Ethics, Science Communication
Methods and Advances.