基于6fda的聚酰亚胺膜的设计和性能评价:来自分子动力学模拟的见解

IF 2.9 2区 化学 Q3 CHEMISTRY, PHYSICAL
Fuquan Teng, Yang Yang, Qingwei Gao, Zengxi Wei, Yingcheng Li*, Jing Cui and Shuangliang Zhao*, 
{"title":"基于6fda的聚酰亚胺膜的设计和性能评价:来自分子动力学模拟的见解","authors":"Fuquan Teng,&nbsp;Yang Yang,&nbsp;Qingwei Gao,&nbsp;Zengxi Wei,&nbsp;Yingcheng Li*,&nbsp;Jing Cui and Shuangliang Zhao*,&nbsp;","doi":"10.1021/acs.jpcb.5c03329","DOIUrl":null,"url":null,"abstract":"<p >The development of high-performance polyimide (PI) membranes for efficient gas separation is of great importance, yet challenging. Herein, we design 17 6FDA-based PI membranes and employ molecular dynamics (MD) simulations to investigate their carbon dioxide (CO<sub>2</sub>) /methane (CH<sub>4</sub>) separation performance. The 6FDA-Durene membrane emerges as a standout candidate, with a mean pore size (MPS) of 5.12 Å, achieving a CO<sub>2</sub> permeability of 13,271.40 Barrer and a CO<sub>2</sub>/CH<sub>4</sub> selectivity of 26.87, surpassing the 2019 upper bound. Further analysis reveals that the steric effect in ultramicropores is favorable for improving CO<sub>2</sub> selectivity, while the combination of outstanding gas diffusivity and high-effective gas solubility in larger pores enables this optimal membrane to exceed the upper bound. When the MPS is increased to 7.06 Å, the CO<sub>2</sub> permeability is improved by approximately 5-fold (up to 66,552.28 Barrer), while the CO<sub>2</sub>/CH<sub>4</sub> selectivity dropped to 5.08 (below the 2008 upper bound). This reduction in selectivity is a consequence of the decline in both gas diffusivity and gas solubility. This study emphasizes the crucial relationship between membrane structures and separation efficiency, offering invaluable insights for the development of advanced PI membranes with enhanced selective transport performance.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":"129 33","pages":"8548–8560"},"PeriodicalIF":2.9000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Performance Evaluation of 6FDA-Based Polyimide Membranes for Enhanced CO2/CH4 Separation: Insights from Molecular Dynamics Simulations\",\"authors\":\"Fuquan Teng,&nbsp;Yang Yang,&nbsp;Qingwei Gao,&nbsp;Zengxi Wei,&nbsp;Yingcheng Li*,&nbsp;Jing Cui and Shuangliang Zhao*,&nbsp;\",\"doi\":\"10.1021/acs.jpcb.5c03329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The development of high-performance polyimide (PI) membranes for efficient gas separation is of great importance, yet challenging. Herein, we design 17 6FDA-based PI membranes and employ molecular dynamics (MD) simulations to investigate their carbon dioxide (CO<sub>2</sub>) /methane (CH<sub>4</sub>) separation performance. The 6FDA-Durene membrane emerges as a standout candidate, with a mean pore size (MPS) of 5.12 Å, achieving a CO<sub>2</sub> permeability of 13,271.40 Barrer and a CO<sub>2</sub>/CH<sub>4</sub> selectivity of 26.87, surpassing the 2019 upper bound. Further analysis reveals that the steric effect in ultramicropores is favorable for improving CO<sub>2</sub> selectivity, while the combination of outstanding gas diffusivity and high-effective gas solubility in larger pores enables this optimal membrane to exceed the upper bound. When the MPS is increased to 7.06 Å, the CO<sub>2</sub> permeability is improved by approximately 5-fold (up to 66,552.28 Barrer), while the CO<sub>2</sub>/CH<sub>4</sub> selectivity dropped to 5.08 (below the 2008 upper bound). This reduction in selectivity is a consequence of the decline in both gas diffusivity and gas solubility. This study emphasizes the crucial relationship between membrane structures and separation efficiency, offering invaluable insights for the development of advanced PI membranes with enhanced selective transport performance.</p>\",\"PeriodicalId\":60,\"journal\":{\"name\":\"The Journal of Physical Chemistry B\",\"volume\":\"129 33\",\"pages\":\"8548–8560\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpcb.5c03329\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpcb.5c03329","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

开发用于高效气体分离的高性能聚酰亚胺(PI)膜非常重要,但也具有挑战性。在此,我们设计了17个基于6fda的PI膜,并采用分子动力学(MD)模拟研究了它们的二氧化碳(CO2) /甲烷(CH4)分离性能。6FDA-Durene膜是一个突出的候选膜,其平均孔径(MPS)为5.12 Å, CO2渗透率为13,271.40 Barrer, CO2/CH4选择性为26.87,超过了2019年的上限。进一步分析表明,超微孔中的位阻效应有利于提高CO2选择性,而在较大孔隙中优异的气体扩散率和高效的气体溶解度的结合使该最佳膜超过了上限。当MPS增加到7.06 Å时,CO2渗透率提高了约5倍(达到66,552.28 Barrer),而CO2/CH4选择性下降到5.08(低于2008年的上限)。这种选择性的降低是气体扩散率和气体溶解度下降的结果。该研究强调了膜结构与分离效率之间的重要关系,为开发具有增强选择性传输性能的先进PI膜提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Design and Performance Evaluation of 6FDA-Based Polyimide Membranes for Enhanced CO2/CH4 Separation: Insights from Molecular Dynamics Simulations

Design and Performance Evaluation of 6FDA-Based Polyimide Membranes for Enhanced CO2/CH4 Separation: Insights from Molecular Dynamics Simulations

The development of high-performance polyimide (PI) membranes for efficient gas separation is of great importance, yet challenging. Herein, we design 17 6FDA-based PI membranes and employ molecular dynamics (MD) simulations to investigate their carbon dioxide (CO2) /methane (CH4) separation performance. The 6FDA-Durene membrane emerges as a standout candidate, with a mean pore size (MPS) of 5.12 Å, achieving a CO2 permeability of 13,271.40 Barrer and a CO2/CH4 selectivity of 26.87, surpassing the 2019 upper bound. Further analysis reveals that the steric effect in ultramicropores is favorable for improving CO2 selectivity, while the combination of outstanding gas diffusivity and high-effective gas solubility in larger pores enables this optimal membrane to exceed the upper bound. When the MPS is increased to 7.06 Å, the CO2 permeability is improved by approximately 5-fold (up to 66,552.28 Barrer), while the CO2/CH4 selectivity dropped to 5.08 (below the 2008 upper bound). This reduction in selectivity is a consequence of the decline in both gas diffusivity and gas solubility. This study emphasizes the crucial relationship between membrane structures and separation efficiency, offering invaluable insights for the development of advanced PI membranes with enhanced selective transport performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.80
自引率
9.10%
发文量
965
审稿时长
1.6 months
期刊介绍: An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信