预测甲苯/水分配系数的多保真度图神经网络

IF 5.7 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Thomas Nevolianis, Jan G. Rittig, Alexander Mitsos, Kai Leonhard
{"title":"预测甲苯/水分配系数的多保真度图神经网络","authors":"Thomas Nevolianis,&nbsp;Jan G. Rittig,&nbsp;Alexander Mitsos,&nbsp;Kai Leonhard","doi":"10.1186/s13321-025-01057-6","DOIUrl":null,"url":null,"abstract":"<div><p>Accurate prediction of toluene/water partition coefficients of neutral species is crucial in drug discovery and separation processes; however, data-driven modeling of these coefficients remains challenging due to limited available experimental data. To address the limitation of available data, we apply multi-fidelity learning approaches leveraging a quantum chemical dataset (low fidelity) of approximately 9000 entries generated by COSMO-RS and an experimental dataset (high fidelity) of about 250 entries collected from the literature. We explore the <i>transfer learning</i>, <i>feature-augmented learning</i>, and <i>multi-target learning</i> approaches in combination with graph neural networks, validating them on two external datasets: one with molecules similar to training data (EXT-Zamora) and one with more challenging molecules (EXT-SAMPL9). Our results show that <i>multi-target learning</i> significantly improves predictive accuracy, achieving a root-mean-square error of 0.44 <span>\\(\\log {P}\\)</span> units for the EXT-Zamora, compared to a root-mean-square error of 0.63 <span>\\(\\log {P}\\)</span> units for single-task models. For the EXT-SAMPL9 dataset, <i>multi-target learning</i> achieves a root-mean-square error of 1.02 <span>\\(\\log {P}\\)</span> units, indicating reasonable performance even for more complex molecular structures. These findings highlight the potential of multi-fidelity learning approaches that leverage quantum chemical data to improve toluene/water partition coefficient predictions and address challenges posed by limited experimental data. We expect the applicability of the methods used beyond just toluene/water partition coefficients.</p></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"17 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-025-01057-6","citationCount":"0","resultStr":"{\"title\":\"Multi-fidelity graph neural networks for predicting toluene/water partition coefficients\",\"authors\":\"Thomas Nevolianis,&nbsp;Jan G. Rittig,&nbsp;Alexander Mitsos,&nbsp;Kai Leonhard\",\"doi\":\"10.1186/s13321-025-01057-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Accurate prediction of toluene/water partition coefficients of neutral species is crucial in drug discovery and separation processes; however, data-driven modeling of these coefficients remains challenging due to limited available experimental data. To address the limitation of available data, we apply multi-fidelity learning approaches leveraging a quantum chemical dataset (low fidelity) of approximately 9000 entries generated by COSMO-RS and an experimental dataset (high fidelity) of about 250 entries collected from the literature. We explore the <i>transfer learning</i>, <i>feature-augmented learning</i>, and <i>multi-target learning</i> approaches in combination with graph neural networks, validating them on two external datasets: one with molecules similar to training data (EXT-Zamora) and one with more challenging molecules (EXT-SAMPL9). Our results show that <i>multi-target learning</i> significantly improves predictive accuracy, achieving a root-mean-square error of 0.44 <span>\\\\(\\\\log {P}\\\\)</span> units for the EXT-Zamora, compared to a root-mean-square error of 0.63 <span>\\\\(\\\\log {P}\\\\)</span> units for single-task models. For the EXT-SAMPL9 dataset, <i>multi-target learning</i> achieves a root-mean-square error of 1.02 <span>\\\\(\\\\log {P}\\\\)</span> units, indicating reasonable performance even for more complex molecular structures. These findings highlight the potential of multi-fidelity learning approaches that leverage quantum chemical data to improve toluene/water partition coefficient predictions and address challenges posed by limited experimental data. We expect the applicability of the methods used beyond just toluene/water partition coefficients.</p></div>\",\"PeriodicalId\":617,\"journal\":{\"name\":\"Journal of Cheminformatics\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-025-01057-6\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cheminformatics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13321-025-01057-6\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-025-01057-6","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

准确预测中性物质的甲苯/水分配系数在药物发现和分离过程中至关重要;然而,由于可用的实验数据有限,这些系数的数据驱动建模仍然具有挑战性。为了解决可用数据的限制,我们应用多保真度学习方法,利用cosmos - rs生成的约9000个条目的量子化学数据集(低保真度)和从文献中收集的约250个条目的实验数据集(高保真度)。我们结合图神经网络探索了迁移学习、特征增强学习和多目标学习方法,并在两个外部数据集上验证了它们:一个具有与训练数据相似的分子(EXT-Zamora),另一个具有更具挑战性的分子(EXT-SAMPL9)。我们的研究结果表明,多目标学习显著提高了预测精度,EXT-Zamora的均方根误差为0.44 $$\log {P}$$单位,而单任务模型的均方根误差为0.63 $$\log {P}$$单位。对于EXT-SAMPL9数据集,多目标学习的均方根误差为1.02 $$\log {P}$$单位,即使对于更复杂的分子结构,也有合理的性能。这些发现突出了利用量子化学数据改进甲苯/水分配系数预测和解决有限实验数据带来的挑战的多保真度学习方法的潜力。我们期望所使用的方法的适用性不仅仅是甲苯/水分配系数。我们研究了迁移学习、特征增强学习和多目标学习方法结合图神经网络预测甲苯-水分配系数的好处。我们展示了如何将来自半经验cosmos - rs模型的大量廉价数据与少量高保真度实验数据和多目标学习有效地结合在一起,从而产生具有广泛适用性和低不确定性的机器学习模型,其划分系数为0.44至1.02个log单位,具体取决于测试集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-fidelity graph neural networks for predicting toluene/water partition coefficients

Accurate prediction of toluene/water partition coefficients of neutral species is crucial in drug discovery and separation processes; however, data-driven modeling of these coefficients remains challenging due to limited available experimental data. To address the limitation of available data, we apply multi-fidelity learning approaches leveraging a quantum chemical dataset (low fidelity) of approximately 9000 entries generated by COSMO-RS and an experimental dataset (high fidelity) of about 250 entries collected from the literature. We explore the transfer learning, feature-augmented learning, and multi-target learning approaches in combination with graph neural networks, validating them on two external datasets: one with molecules similar to training data (EXT-Zamora) and one with more challenging molecules (EXT-SAMPL9). Our results show that multi-target learning significantly improves predictive accuracy, achieving a root-mean-square error of 0.44 \(\log {P}\) units for the EXT-Zamora, compared to a root-mean-square error of 0.63 \(\log {P}\) units for single-task models. For the EXT-SAMPL9 dataset, multi-target learning achieves a root-mean-square error of 1.02 \(\log {P}\) units, indicating reasonable performance even for more complex molecular structures. These findings highlight the potential of multi-fidelity learning approaches that leverage quantum chemical data to improve toluene/water partition coefficient predictions and address challenges posed by limited experimental data. We expect the applicability of the methods used beyond just toluene/water partition coefficients.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cheminformatics
Journal of Cheminformatics CHEMISTRY, MULTIDISCIPLINARY-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
14.10
自引率
7.00%
发文量
82
审稿时长
3 months
期刊介绍: Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling. Coverage includes, but is not limited to: chemical information systems, software and databases, and molecular modelling, chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases, computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信