基于非谐波电位调制的连续系统量子控制

IF 5.1 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Quantum Pub Date : 2025-08-08 DOI:10.22331/q-2025-08-08-1824
Piotr T. Grochowski, Hannes Pichler, Cindy A. Regal, Oriol Romero-Isart
{"title":"基于非谐波电位调制的连续系统量子控制","authors":"Piotr T. Grochowski, Hannes Pichler, Cindy A. Regal, Oriol Romero-Isart","doi":"10.22331/q-2025-08-08-1824","DOIUrl":null,"url":null,"abstract":"We present a theoretical proposal for preparing and manipulating a state of a single continuous-variable degree of freedom confined to a nonharmonic potential. By utilizing optimally controlled modulation of the potential's position and depth, we demonstrate the generation of non-Gaussian states, including Fock, Gottesman-Kitaev-Preskill, multi-legged-cat, and cubic-phase states, as well as the implementation of arbitrary unitaries within a selected two-level subspace. Additionally, we propose protocols for single-shot orthogonal state discrimination, algorithmic cooling, and correcting for nonlinear evolution. We analyze the robustness of this control scheme against noise. Since all the presented protocols rely solely on the precise modulation of the effective nonharmonic potential landscape, they are relevant to several experiments with continuous-variable systems, including the motion of a single particle in an optical tweezer or lattice, or current in circuit quantum electrodynamics.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"7 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum control of continuous systems via nonharmonic potential modulation\",\"authors\":\"Piotr T. Grochowski, Hannes Pichler, Cindy A. Regal, Oriol Romero-Isart\",\"doi\":\"10.22331/q-2025-08-08-1824\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a theoretical proposal for preparing and manipulating a state of a single continuous-variable degree of freedom confined to a nonharmonic potential. By utilizing optimally controlled modulation of the potential's position and depth, we demonstrate the generation of non-Gaussian states, including Fock, Gottesman-Kitaev-Preskill, multi-legged-cat, and cubic-phase states, as well as the implementation of arbitrary unitaries within a selected two-level subspace. Additionally, we propose protocols for single-shot orthogonal state discrimination, algorithmic cooling, and correcting for nonlinear evolution. We analyze the robustness of this control scheme against noise. Since all the presented protocols rely solely on the precise modulation of the effective nonharmonic potential landscape, they are relevant to several experiments with continuous-variable systems, including the motion of a single particle in an optical tweezer or lattice, or current in circuit quantum electrodynamics.\",\"PeriodicalId\":20807,\"journal\":{\"name\":\"Quantum\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.22331/q-2025-08-08-1824\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-08-08-1824","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一个理论建议,用于准备和操纵一个单一的连续可变自由度限制在一个非调和势的状态。通过对势的位置和深度进行最优控制调制,我们展示了非高斯态的生成,包括Fock、Gottesman-Kitaev-Preskill、多足猫和三相态,以及在选定的两层子空间内实现任意幺正。此外,我们还提出了单次正交状态判别、算法冷却和非线性进化校正的协议。分析了该控制方案对噪声的鲁棒性。由于所有提出的协议仅依赖于有效非谐波势场的精确调制,因此它们与连续变量系统的几个实验相关,包括光镊或晶格中单个粒子的运动,或电路量子电动力学中的电流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum control of continuous systems via nonharmonic potential modulation
We present a theoretical proposal for preparing and manipulating a state of a single continuous-variable degree of freedom confined to a nonharmonic potential. By utilizing optimally controlled modulation of the potential's position and depth, we demonstrate the generation of non-Gaussian states, including Fock, Gottesman-Kitaev-Preskill, multi-legged-cat, and cubic-phase states, as well as the implementation of arbitrary unitaries within a selected two-level subspace. Additionally, we propose protocols for single-shot orthogonal state discrimination, algorithmic cooling, and correcting for nonlinear evolution. We analyze the robustness of this control scheme against noise. Since all the presented protocols rely solely on the precise modulation of the effective nonharmonic potential landscape, they are relevant to several experiments with continuous-variable systems, including the motion of a single particle in an optical tweezer or lattice, or current in circuit quantum electrodynamics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantum
Quantum Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍: Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信