吸烟行为的机器学习分类——从社会环境到前额皮质。

IF 2.6 3区 医学
Pablo Reinhardt, Norman Zacharias, Marinus Fislage, Justin Böhmer, Barbara Hollunder, Zala Reppmann, Anton Wiehe, Rebecca Rajwich, Nanne Dominick, Kerstin Ritter, Malek Bajbouj, Thomas Wienker, Jürgen Gallinat, Norbert Thürauf, Johannes Kornhuber, Falk Kiefer, Michael Wagner, Oliver Tüscher, Henrik Walter, Georg Winterer
{"title":"吸烟行为的机器学习分类——从社会环境到前额皮质。","authors":"Pablo Reinhardt, Norman Zacharias, Marinus Fislage, Justin Böhmer, Barbara Hollunder, Zala Reppmann, Anton Wiehe, Rebecca Rajwich, Nanne Dominick, Kerstin Ritter, Malek Bajbouj, Thomas Wienker, Jürgen Gallinat, Norbert Thürauf, Johannes Kornhuber, Falk Kiefer, Michael Wagner, Oliver Tüscher, Henrik Walter, Georg Winterer","doi":"10.1111/adb.70056","DOIUrl":null,"url":null,"abstract":"<p><p>The pronounced heterogeneity in smoking trajectories-ranging from occasional or heavy use to successful quitting -highlights substantial interindividual variation within the smoking population. Machine learning is particularly well suited to capture these complex patterns that may be challenging for traditional inferential statistics to uncover. In this study, we applied machine learning to data from a population-based cohort to identify multimodal markers that distinguish smokers from never smokers at baseline and predict long-term cessation success at a 10-year follow-up. We employed 10 times repeated nested cross-validation (10 outer folds, 5 inner folds) to analyse baseline data (T1) from 707 smokers-including 222 heavy smokers (FTND ≥ 4)-and 864 never smokers for smoking status classification. At the 10-year follow-up (T2), we further classified 60 successful quitters (≥ 1 year abstinent) versus 81 non-quitters. Feature importance was assessed using averaged SHAP values derived from test set predictions. Classification models achieved the following performance, expressed by the area under the receiver operating characteristic curve (AUROC; mean ± SD): smokers versus never smokers, 0.85 ± 0.03; heavy smokers versus never smokers, 0.92 ± 0.03; and quitters versus non-quitters, 0.68 ± 0.13. SHAP analysis identified markers of frontal functioning, cognitive control and smoking behaviour within the social environment among the most influential predictors of both smoking status and cessation success. In conclusion, our machine learning analyses support a multifactorial model of smoking behaviour and cessation success, which may inform nuanced risk stratification to advance the development of personalized cessation strategies.</p>","PeriodicalId":48966,"journal":{"name":"Addiction Biology","volume":"30 8","pages":"e70056"},"PeriodicalIF":2.6000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12328245/pdf/","citationCount":"0","resultStr":"{\"title\":\"Machine Learning Classification of Smoking Behaviours-From Social Environment to the Prefrontal Cortex.\",\"authors\":\"Pablo Reinhardt, Norman Zacharias, Marinus Fislage, Justin Böhmer, Barbara Hollunder, Zala Reppmann, Anton Wiehe, Rebecca Rajwich, Nanne Dominick, Kerstin Ritter, Malek Bajbouj, Thomas Wienker, Jürgen Gallinat, Norbert Thürauf, Johannes Kornhuber, Falk Kiefer, Michael Wagner, Oliver Tüscher, Henrik Walter, Georg Winterer\",\"doi\":\"10.1111/adb.70056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The pronounced heterogeneity in smoking trajectories-ranging from occasional or heavy use to successful quitting -highlights substantial interindividual variation within the smoking population. Machine learning is particularly well suited to capture these complex patterns that may be challenging for traditional inferential statistics to uncover. In this study, we applied machine learning to data from a population-based cohort to identify multimodal markers that distinguish smokers from never smokers at baseline and predict long-term cessation success at a 10-year follow-up. We employed 10 times repeated nested cross-validation (10 outer folds, 5 inner folds) to analyse baseline data (T1) from 707 smokers-including 222 heavy smokers (FTND ≥ 4)-and 864 never smokers for smoking status classification. At the 10-year follow-up (T2), we further classified 60 successful quitters (≥ 1 year abstinent) versus 81 non-quitters. Feature importance was assessed using averaged SHAP values derived from test set predictions. Classification models achieved the following performance, expressed by the area under the receiver operating characteristic curve (AUROC; mean ± SD): smokers versus never smokers, 0.85 ± 0.03; heavy smokers versus never smokers, 0.92 ± 0.03; and quitters versus non-quitters, 0.68 ± 0.13. SHAP analysis identified markers of frontal functioning, cognitive control and smoking behaviour within the social environment among the most influential predictors of both smoking status and cessation success. In conclusion, our machine learning analyses support a multifactorial model of smoking behaviour and cessation success, which may inform nuanced risk stratification to advance the development of personalized cessation strategies.</p>\",\"PeriodicalId\":48966,\"journal\":{\"name\":\"Addiction Biology\",\"volume\":\"30 8\",\"pages\":\"e70056\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12328245/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Addiction Biology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/adb.70056\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Addiction Biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/adb.70056","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

吸烟轨迹的明显异质性——从偶尔或大量吸烟到成功戒烟——突出了吸烟人群中存在的大量个体差异。机器学习特别适合捕捉这些复杂的模式,而传统的推理统计可能很难发现这些模式。在这项研究中,我们将机器学习应用于基于人群的队列数据,以确定在基线时区分吸烟者和从不吸烟者的多模态标记,并在10年随访中预测长期戒烟成功。我们采用10次重复嵌套交叉验证(10次外折叠,5次内折叠)来分析707名吸烟者的基线数据(T1),其中包括222名重度吸烟者(FTND≥4)和864名从不吸烟者进行吸烟状态分类。在10年随访(T2)中,我们进一步分类了60例成功戒烟者(戒烟≥1年)和81例未戒烟者。使用从测试集预测得出的平均SHAP值评估特征重要性。分类模型实现了以下性能,用接受者工作特征曲线下面积(AUROC;平均值±SD):吸烟者与从不吸烟者,0.85±0.03;重度吸烟者vs从不吸烟者,0.92±0.03;戒烟者和非戒烟者,0.68±0.13。SHAP分析确定了社会环境中额叶功能、认知控制和吸烟行为的标记,这些标记是吸烟状况和戒烟成功的最具影响力的预测因素。总之,我们的机器学习分析支持吸烟行为和戒烟成功的多因素模型,这可能为细微的风险分层提供信息,以促进个性化戒烟策略的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Machine Learning Classification of Smoking Behaviours-From Social Environment to the Prefrontal Cortex.

Machine Learning Classification of Smoking Behaviours-From Social Environment to the Prefrontal Cortex.

Machine Learning Classification of Smoking Behaviours-From Social Environment to the Prefrontal Cortex.

Machine Learning Classification of Smoking Behaviours-From Social Environment to the Prefrontal Cortex.

Machine Learning Classification of Smoking Behaviours-From Social Environment to the Prefrontal Cortex.

Machine Learning Classification of Smoking Behaviours-From Social Environment to the Prefrontal Cortex.

Machine Learning Classification of Smoking Behaviours-From Social Environment to the Prefrontal Cortex.

The pronounced heterogeneity in smoking trajectories-ranging from occasional or heavy use to successful quitting -highlights substantial interindividual variation within the smoking population. Machine learning is particularly well suited to capture these complex patterns that may be challenging for traditional inferential statistics to uncover. In this study, we applied machine learning to data from a population-based cohort to identify multimodal markers that distinguish smokers from never smokers at baseline and predict long-term cessation success at a 10-year follow-up. We employed 10 times repeated nested cross-validation (10 outer folds, 5 inner folds) to analyse baseline data (T1) from 707 smokers-including 222 heavy smokers (FTND ≥ 4)-and 864 never smokers for smoking status classification. At the 10-year follow-up (T2), we further classified 60 successful quitters (≥ 1 year abstinent) versus 81 non-quitters. Feature importance was assessed using averaged SHAP values derived from test set predictions. Classification models achieved the following performance, expressed by the area under the receiver operating characteristic curve (AUROC; mean ± SD): smokers versus never smokers, 0.85 ± 0.03; heavy smokers versus never smokers, 0.92 ± 0.03; and quitters versus non-quitters, 0.68 ± 0.13. SHAP analysis identified markers of frontal functioning, cognitive control and smoking behaviour within the social environment among the most influential predictors of both smoking status and cessation success. In conclusion, our machine learning analyses support a multifactorial model of smoking behaviour and cessation success, which may inform nuanced risk stratification to advance the development of personalized cessation strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Addiction Biology
Addiction Biology BIOCHEMISTRY & MOLECULAR BIOLOGY-SUBSTANCE ABUSE
自引率
2.90%
发文量
118
期刊介绍: Addiction Biology is focused on neuroscience contributions and it aims to advance our understanding of the action of drugs of abuse and addictive processes. Papers are accepted in both animal experimentation or clinical research. The content is geared towards behavioral, molecular, genetic, biochemical, neuro-biological and pharmacology aspects of these fields. Addiction Biology includes peer-reviewed original research reports and reviews. Addiction Biology is published on behalf of the Society for the Study of Addiction to Alcohol and other Drugs (SSA). Members of the Society for the Study of Addiction receive the Journal as part of their annual membership subscription.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信