Fen Hu , Xiaomei Zhang , Zhou Gong , Pei Wu , Qun Zhao , Yuyan Zheng , Hang Gao , Shan-Ho Chou , Xinfeng Li , Mingyue Zhong , Zirong Zhao , Ning Shi , Hongping Wei , Jin He , Hang Yang
{"title":"嵌合双结构域溶酶的结构域相互作用导致广泛的杀菌活性。","authors":"Fen Hu , Xiaomei Zhang , Zhou Gong , Pei Wu , Qun Zhao , Yuyan Zheng , Hang Gao , Shan-Ho Chou , Xinfeng Li , Mingyue Zhong , Zirong Zhao , Ning Shi , Hongping Wei , Jin He , Hang Yang","doi":"10.1016/j.jmb.2025.169373","DOIUrl":null,"url":null,"abstract":"<div><div>Phage-derived lysins represent a novel, non-traditional therapeutic agent against multidrug-resistant bacteria. However, engineering lysins with broad host range remain poorly addressed. Previously, we reported that the chimeric lysin ClyR, which harbors the CHAP catalytic domain of PlyC lysin (PlyCAC) and the SH3b cell-wall binding domain of PlySs2 lysin (PlySb), exhibits an expanded host range<em>.</em> However, the mechanism by which ClyR exhibits expanded bactericidal activity is still not fully understood. Since the structure of PlyCAC is publicly available (PDB code: 4F88), here, we first solve the crystal structure of PlySb using X-ray diffraction, and then use various biophysical methods, such as X-ray diffraction, cross-linking coupled mass spectrometry (CXMS), and small-angle X-ray scattering (SAXS) to analyze the potential full-length structures of ClyR. Our results demonstrate that ClyR exhibits a dynamic conformation supported by multiple inter-domain interactions between the two constituent domains. Mutagenesis and biochemical analysis further support the notion that these inter-domain interactions may modulate the bactericidal activity of ClyR. Altogether, our findings provide novel insights into the action mechanism of ClyR and a better understanding of how inter-domain interactions influence the host range of chimeric lysins.</div></div>","PeriodicalId":369,"journal":{"name":"Journal of Molecular Biology","volume":"437 21","pages":"Article 169373"},"PeriodicalIF":4.5000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Domain Interactions in a Chimeric Dual-domain Lysin Lead to Broad Bactericidal Activity\",\"authors\":\"Fen Hu , Xiaomei Zhang , Zhou Gong , Pei Wu , Qun Zhao , Yuyan Zheng , Hang Gao , Shan-Ho Chou , Xinfeng Li , Mingyue Zhong , Zirong Zhao , Ning Shi , Hongping Wei , Jin He , Hang Yang\",\"doi\":\"10.1016/j.jmb.2025.169373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Phage-derived lysins represent a novel, non-traditional therapeutic agent against multidrug-resistant bacteria. However, engineering lysins with broad host range remain poorly addressed. Previously, we reported that the chimeric lysin ClyR, which harbors the CHAP catalytic domain of PlyC lysin (PlyCAC) and the SH3b cell-wall binding domain of PlySs2 lysin (PlySb), exhibits an expanded host range<em>.</em> However, the mechanism by which ClyR exhibits expanded bactericidal activity is still not fully understood. Since the structure of PlyCAC is publicly available (PDB code: 4F88), here, we first solve the crystal structure of PlySb using X-ray diffraction, and then use various biophysical methods, such as X-ray diffraction, cross-linking coupled mass spectrometry (CXMS), and small-angle X-ray scattering (SAXS) to analyze the potential full-length structures of ClyR. Our results demonstrate that ClyR exhibits a dynamic conformation supported by multiple inter-domain interactions between the two constituent domains. Mutagenesis and biochemical analysis further support the notion that these inter-domain interactions may modulate the bactericidal activity of ClyR. Altogether, our findings provide novel insights into the action mechanism of ClyR and a better understanding of how inter-domain interactions influence the host range of chimeric lysins.</div></div>\",\"PeriodicalId\":369,\"journal\":{\"name\":\"Journal of Molecular Biology\",\"volume\":\"437 21\",\"pages\":\"Article 169373\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022283625004395\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022283625004395","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Domain Interactions in a Chimeric Dual-domain Lysin Lead to Broad Bactericidal Activity
Phage-derived lysins represent a novel, non-traditional therapeutic agent against multidrug-resistant bacteria. However, engineering lysins with broad host range remain poorly addressed. Previously, we reported that the chimeric lysin ClyR, which harbors the CHAP catalytic domain of PlyC lysin (PlyCAC) and the SH3b cell-wall binding domain of PlySs2 lysin (PlySb), exhibits an expanded host range. However, the mechanism by which ClyR exhibits expanded bactericidal activity is still not fully understood. Since the structure of PlyCAC is publicly available (PDB code: 4F88), here, we first solve the crystal structure of PlySb using X-ray diffraction, and then use various biophysical methods, such as X-ray diffraction, cross-linking coupled mass spectrometry (CXMS), and small-angle X-ray scattering (SAXS) to analyze the potential full-length structures of ClyR. Our results demonstrate that ClyR exhibits a dynamic conformation supported by multiple inter-domain interactions between the two constituent domains. Mutagenesis and biochemical analysis further support the notion that these inter-domain interactions may modulate the bactericidal activity of ClyR. Altogether, our findings provide novel insights into the action mechanism of ClyR and a better understanding of how inter-domain interactions influence the host range of chimeric lysins.
期刊介绍:
Journal of Molecular Biology (JMB) provides high quality, comprehensive and broad coverage in all areas of molecular biology. The journal publishes original scientific research papers that provide mechanistic and functional insights and report a significant advance to the field. The journal encourages the submission of multidisciplinary studies that use complementary experimental and computational approaches to address challenging biological questions.
Research areas include but are not limited to: Biomolecular interactions, signaling networks, systems biology; Cell cycle, cell growth, cell differentiation; Cell death, autophagy; Cell signaling and regulation; Chemical biology; Computational biology, in combination with experimental studies; DNA replication, repair, and recombination; Development, regenerative biology, mechanistic and functional studies of stem cells; Epigenetics, chromatin structure and function; Gene expression; Membrane processes, cell surface proteins and cell-cell interactions; Methodological advances, both experimental and theoretical, including databases; Microbiology, virology, and interactions with the host or environment; Microbiota mechanistic and functional studies; Nuclear organization; Post-translational modifications, proteomics; Processing and function of biologically important macromolecules and complexes; Molecular basis of disease; RNA processing, structure and functions of non-coding RNAs, transcription; Sorting, spatiotemporal organization, trafficking; Structural biology; Synthetic biology; Translation, protein folding, chaperones, protein degradation and quality control.