添加有机外加剂后硅酸盐水泥水炭化CaCO3多态物的热力学计算

Xujia You, Xiang Hu, Zhiqiang Xiao, Zain Ali Saleh Bairq, Wei Chen, Nemkumar Banthia, Caijun Shi
{"title":"添加有机外加剂后硅酸盐水泥水炭化CaCO3多态物的热力学计算","authors":"Xujia You, Xiang Hu, Zhiqiang Xiao, Zain Ali Saleh Bairq, Wei Chen, Nemkumar Banthia, Caijun Shi","doi":"10.1016/j.cemconcomp.2025.106279","DOIUrl":null,"url":null,"abstract":"The carbonation curing of cement-based materials has been widely recognized as one of the most promising technologies for CO<sub>2</sub> storage and utilization. Calcium carbonate is the main carbonation product of cement-based materials, which includes three anhydrous polymorphs: cubic calcite, needle-like aragonite, and amorphous vaterite. Products composed of aragonite with a large aspect ratio are inclined to develop whisker-like structures, which confer enhanced flexural strength and toughness. In this paper, a thermodynamic model for the formation of different CaCO<sub>3</sub> polymorphs during the aqueous carbonation with organic additives that selectively promote aragonite formation is proposed. The effects of four organic additives including polyacrylic acid (PAA), polyacrylamide (PAM), polyvinyl alcohol (PVA) and monoethanolamine (MEA) on the proportion of different CaCO<sub>3</sub> polymorphs produced during carbonation were quantified. By comparing the literature data and experimental results with the modelling output, the average error of the model for the four different organic additives (PAA, PAM, PVA, MEA) is 2.70%, 4.61%, 3.05% and 3.71% respectively. Through calculation, the thermodynamic mechanism of the selective adsorption of organic additives on the surface of aragonite has been revealed. The carbonation parameters, including temperature, CO<sub>2</sub> input and additives concentration have been found to specifically affect the polymorphs of CaCO<sub>3</sub> in three aspects: 1) adjusting the effective concentration of organic additives adsorbed on the surface of calcium carbonate; 2) altering the difference in surface energy and critical nucleation Gibbs free energy between aragonite and calcite; 3) regulating the reduction in surface energy attributed to per mole organic additive.","PeriodicalId":519419,"journal":{"name":"Cement and Concrete Composites","volume":"95 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermodynamic calculation of CaCO3 polymorphs from aqueous carbonation of Portland cement with the addition of organic additives\",\"authors\":\"Xujia You, Xiang Hu, Zhiqiang Xiao, Zain Ali Saleh Bairq, Wei Chen, Nemkumar Banthia, Caijun Shi\",\"doi\":\"10.1016/j.cemconcomp.2025.106279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The carbonation curing of cement-based materials has been widely recognized as one of the most promising technologies for CO<sub>2</sub> storage and utilization. Calcium carbonate is the main carbonation product of cement-based materials, which includes three anhydrous polymorphs: cubic calcite, needle-like aragonite, and amorphous vaterite. Products composed of aragonite with a large aspect ratio are inclined to develop whisker-like structures, which confer enhanced flexural strength and toughness. In this paper, a thermodynamic model for the formation of different CaCO<sub>3</sub> polymorphs during the aqueous carbonation with organic additives that selectively promote aragonite formation is proposed. The effects of four organic additives including polyacrylic acid (PAA), polyacrylamide (PAM), polyvinyl alcohol (PVA) and monoethanolamine (MEA) on the proportion of different CaCO<sub>3</sub> polymorphs produced during carbonation were quantified. By comparing the literature data and experimental results with the modelling output, the average error of the model for the four different organic additives (PAA, PAM, PVA, MEA) is 2.70%, 4.61%, 3.05% and 3.71% respectively. Through calculation, the thermodynamic mechanism of the selective adsorption of organic additives on the surface of aragonite has been revealed. The carbonation parameters, including temperature, CO<sub>2</sub> input and additives concentration have been found to specifically affect the polymorphs of CaCO<sub>3</sub> in three aspects: 1) adjusting the effective concentration of organic additives adsorbed on the surface of calcium carbonate; 2) altering the difference in surface energy and critical nucleation Gibbs free energy between aragonite and calcite; 3) regulating the reduction in surface energy attributed to per mole organic additive.\",\"PeriodicalId\":519419,\"journal\":{\"name\":\"Cement and Concrete Composites\",\"volume\":\"95 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cement and Concrete Composites\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cemconcomp.2025.106279\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement and Concrete Composites","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cemconcomp.2025.106279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

水泥基材料的碳化固化已被广泛认为是最有前途的二氧化碳储存和利用技术之一。碳酸钙是水泥基材料的主要碳酸化产物,包括立方方解石、针状文石和无定形水晶石三种无水多晶型。由大长宽比文石组成的产品倾向于形成晶须状结构,从而增强了抗弯强度和韧性。本文提出了在有选择性地促进文石形成的有机添加剂的作用下,不同CaCO3多晶在水碳酸化过程中形成的热力学模型。定量研究了聚丙烯酸(PAA)、聚丙烯酰胺(PAM)、聚乙烯醇(PVA)和单乙醇胺(MEA) 4种有机添加剂对碳酸化过程中不同CaCO3多晶比例的影响。将文献数据和实验结果与模型输出进行比较,模型对四种不同有机添加剂(PAA、PAM、PVA、MEA)的平均误差分别为2.70%、4.61%、3.05%和3.71%。通过计算,揭示了有机添加剂在文石表面选择性吸附的热力学机理。研究发现,温度、CO2输入量和添加剂浓度等碳化参数对CaCO3晶型的影响主要体现在三个方面:1)调节吸附在碳酸钙表面的有机添加剂的有效浓度;2)改变文石和方解石表面能和临界成核吉布斯自由能的差异;3)调节每摩尔有机添加剂引起的表面能降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermodynamic calculation of CaCO3 polymorphs from aqueous carbonation of Portland cement with the addition of organic additives
The carbonation curing of cement-based materials has been widely recognized as one of the most promising technologies for CO2 storage and utilization. Calcium carbonate is the main carbonation product of cement-based materials, which includes three anhydrous polymorphs: cubic calcite, needle-like aragonite, and amorphous vaterite. Products composed of aragonite with a large aspect ratio are inclined to develop whisker-like structures, which confer enhanced flexural strength and toughness. In this paper, a thermodynamic model for the formation of different CaCO3 polymorphs during the aqueous carbonation with organic additives that selectively promote aragonite formation is proposed. The effects of four organic additives including polyacrylic acid (PAA), polyacrylamide (PAM), polyvinyl alcohol (PVA) and monoethanolamine (MEA) on the proportion of different CaCO3 polymorphs produced during carbonation were quantified. By comparing the literature data and experimental results with the modelling output, the average error of the model for the four different organic additives (PAA, PAM, PVA, MEA) is 2.70%, 4.61%, 3.05% and 3.71% respectively. Through calculation, the thermodynamic mechanism of the selective adsorption of organic additives on the surface of aragonite has been revealed. The carbonation parameters, including temperature, CO2 input and additives concentration have been found to specifically affect the polymorphs of CaCO3 in three aspects: 1) adjusting the effective concentration of organic additives adsorbed on the surface of calcium carbonate; 2) altering the difference in surface energy and critical nucleation Gibbs free energy between aragonite and calcite; 3) regulating the reduction in surface energy attributed to per mole organic additive.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信