车联网中的负载平衡:SDN和机器学习方法的综合综述

IF 28 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS
Phibadeity S Marwein, Debdatta Kandar
{"title":"车联网中的负载平衡:SDN和机器学习方法的综合综述","authors":"Phibadeity S Marwein, Debdatta Kandar","doi":"10.1145/3759242","DOIUrl":null,"url":null,"abstract":"Efficient load balancing (LB) is crucial for optimizing network performance in Wireless Sensor Networks (WSN), the Internet of Things (IoT), and Unmanned Aerial Vehicles (UAV), as well as the emerging Internet of Vehicles (IoV). In this paper, we study various LB techniques across these domains, including Software-Defined Networking (SDN) and Machine Learning (ML)-based approaches. SDN enables centralized control and real-time adaptability, while ML enhances decision-making through predictive analytics. Given the limited research on IoV, we leverage insights from WSN, IoT, and UAVs to propose an innovative technique that integrates SDN with ML for intelligent, adaptive LB in IoV. This approach promises to optimize network performance, reduce latency, and improve fault tolerance, offering a new research direction in vehicular networks.","PeriodicalId":50926,"journal":{"name":"ACM Computing Surveys","volume":"53 1","pages":""},"PeriodicalIF":28.0000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Load Balancing in the Internet of Vehicles: A Comprehensive Review of SDN and Machine Learning Approaches\",\"authors\":\"Phibadeity S Marwein, Debdatta Kandar\",\"doi\":\"10.1145/3759242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Efficient load balancing (LB) is crucial for optimizing network performance in Wireless Sensor Networks (WSN), the Internet of Things (IoT), and Unmanned Aerial Vehicles (UAV), as well as the emerging Internet of Vehicles (IoV). In this paper, we study various LB techniques across these domains, including Software-Defined Networking (SDN) and Machine Learning (ML)-based approaches. SDN enables centralized control and real-time adaptability, while ML enhances decision-making through predictive analytics. Given the limited research on IoV, we leverage insights from WSN, IoT, and UAVs to propose an innovative technique that integrates SDN with ML for intelligent, adaptive LB in IoV. This approach promises to optimize network performance, reduce latency, and improve fault tolerance, offering a new research direction in vehicular networks.\",\"PeriodicalId\":50926,\"journal\":{\"name\":\"ACM Computing Surveys\",\"volume\":\"53 1\",\"pages\":\"\"},\"PeriodicalIF\":28.0000,\"publicationDate\":\"2025-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Computing Surveys\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3759242\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Computing Surveys","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3759242","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

在无线传感器网络(WSN)、物联网(IoT)、无人机(UAV)以及新兴的车联网(IoV)中,高效负载均衡(LB)对于优化网络性能至关重要。在本文中,我们研究了这些领域的各种负载均衡技术,包括基于软件定义网络(SDN)和基于机器学习(ML)的方法。SDN实现集中控制和实时适应性,而ML通过预测分析增强决策。鉴于物联网的研究有限,我们利用来自WSN、物联网和无人机的见解,提出了一种将SDN与ML集成在一起的创新技术,用于物联网中的智能、自适应LB。该方法有望优化网络性能、降低时延、提高容错性,为车载网络提供新的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Load Balancing in the Internet of Vehicles: A Comprehensive Review of SDN and Machine Learning Approaches
Efficient load balancing (LB) is crucial for optimizing network performance in Wireless Sensor Networks (WSN), the Internet of Things (IoT), and Unmanned Aerial Vehicles (UAV), as well as the emerging Internet of Vehicles (IoV). In this paper, we study various LB techniques across these domains, including Software-Defined Networking (SDN) and Machine Learning (ML)-based approaches. SDN enables centralized control and real-time adaptability, while ML enhances decision-making through predictive analytics. Given the limited research on IoV, we leverage insights from WSN, IoT, and UAVs to propose an innovative technique that integrates SDN with ML for intelligent, adaptive LB in IoV. This approach promises to optimize network performance, reduce latency, and improve fault tolerance, offering a new research direction in vehicular networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Computing Surveys
ACM Computing Surveys 工程技术-计算机:理论方法
CiteScore
33.20
自引率
0.60%
发文量
372
审稿时长
12 months
期刊介绍: ACM Computing Surveys is an academic journal that focuses on publishing surveys and tutorials on various areas of computing research and practice. The journal aims to provide comprehensive and easily understandable articles that guide readers through the literature and help them understand topics outside their specialties. In terms of impact, CSUR has a high reputation with a 2022 Impact Factor of 16.6. It is ranked 3rd out of 111 journals in the field of Computer Science Theory & Methods. ACM Computing Surveys is indexed and abstracted in various services, including AI2 Semantic Scholar, Baidu, Clarivate/ISI: JCR, CNKI, DeepDyve, DTU, EBSCO: EDS/HOST, and IET Inspec, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信