Hiroyuki Harada, Yasunari Suzuki, Bo Yang, Yuuki Tokunaga, Suguru Endo
{"title":"噪声量子器件混合张量网络的密度矩阵表示","authors":"Hiroyuki Harada, Yasunari Suzuki, Bo Yang, Yuuki Tokunaga, Suguru Endo","doi":"10.22331/q-2025-08-07-1823","DOIUrl":null,"url":null,"abstract":"The hybrid tensor network (HTN) method is a general framework allowing for the construction of an effective wavefunction with the combination of classical tensors and quantum tensors, i.e., amplitudes of quantum states. In particular, hybrid tree tensor networks (HTTNs) are very useful for simulating larger systems beyond the available size of the quantum hardware. However, while the realistic quantum states in NISQ hardware are highly likely to be noisy, this framework is formulated for pure states. In this work, as well as discussing the relevant methods, i.e., Deep VQE and entanglement forging under the framework of HTTNs, we investigate the noisy HTN states by introducing the expansion operator for providing the description of the expansion of the size of simulated quantum systems and the noise propagation. This framework enables the general tree HTN states to be explicitly represented and their physicality to be discussed. We also show that the expectation value of a measured observable exponentially vanishes with the number of contracted quantum tensors. Our work will lead to providing the noise-resilient construction of HTN states.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"3 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Density matrix representation of hybrid tensor networks for noisy quantum devices\",\"authors\":\"Hiroyuki Harada, Yasunari Suzuki, Bo Yang, Yuuki Tokunaga, Suguru Endo\",\"doi\":\"10.22331/q-2025-08-07-1823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The hybrid tensor network (HTN) method is a general framework allowing for the construction of an effective wavefunction with the combination of classical tensors and quantum tensors, i.e., amplitudes of quantum states. In particular, hybrid tree tensor networks (HTTNs) are very useful for simulating larger systems beyond the available size of the quantum hardware. However, while the realistic quantum states in NISQ hardware are highly likely to be noisy, this framework is formulated for pure states. In this work, as well as discussing the relevant methods, i.e., Deep VQE and entanglement forging under the framework of HTTNs, we investigate the noisy HTN states by introducing the expansion operator for providing the description of the expansion of the size of simulated quantum systems and the noise propagation. This framework enables the general tree HTN states to be explicitly represented and their physicality to be discussed. We also show that the expectation value of a measured observable exponentially vanishes with the number of contracted quantum tensors. Our work will lead to providing the noise-resilient construction of HTN states.\",\"PeriodicalId\":20807,\"journal\":{\"name\":\"Quantum\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.22331/q-2025-08-07-1823\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-08-07-1823","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Density matrix representation of hybrid tensor networks for noisy quantum devices
The hybrid tensor network (HTN) method is a general framework allowing for the construction of an effective wavefunction with the combination of classical tensors and quantum tensors, i.e., amplitudes of quantum states. In particular, hybrid tree tensor networks (HTTNs) are very useful for simulating larger systems beyond the available size of the quantum hardware. However, while the realistic quantum states in NISQ hardware are highly likely to be noisy, this framework is formulated for pure states. In this work, as well as discussing the relevant methods, i.e., Deep VQE and entanglement forging under the framework of HTTNs, we investigate the noisy HTN states by introducing the expansion operator for providing the description of the expansion of the size of simulated quantum systems and the noise propagation. This framework enables the general tree HTN states to be explicitly represented and their physicality to be discussed. We also show that the expectation value of a measured observable exponentially vanishes with the number of contracted quantum tensors. Our work will lead to providing the noise-resilient construction of HTN states.
QuantumPhysics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍:
Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.