{"title":"考虑化学渗透和蠕变变形的粘性土大应变固结和溶质运移的新数值模型","authors":"Peng-Lin Li, Ding-Bao Song, Zhen-Yu Yin, Jian-Hua Yin","doi":"10.1002/nag.70030","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Contaminated geomaterials in CDFs (confined disposal facilities) and CCLs (compacted clay layers) typically undergo a long-term process involving coupled finite strain consolidation and solute transport, posing challenges for fully coupled modeling. To fill this research gap, a novel finite strain consolidation-solute transport model incorporating chemico-osmotic and creep effects is developed. The predictive accuracy of the model is verified through comparisons with existing analytical and numerical solute transport models with consolidation effect, a finite-strain consolidation model, and a small-strain HMC (hydro-mechanical-chemo) model. The model effectively replicates oedometer tests with one-step and three-step salinization, revealing significant volume changes (15.6% and 5.74% for two tests) due to chemical loading, even larger than those (5.31% and 5.13%) due to mechanical loading. Finally, parametric studies highlight the influence of creep, compressibility, boundary conditions, initial concentration distribution, and adsorption, demonstrating that chemico-osmotic effects can generate large negative pore pressures (50% of initial pore pressure) and average consolidation degree (about 140%). Compared with consolidation-related parameters, the adsorption coefficient has a more noticeable effect on solute transport, leading to bottom concentration values ranging from 54% to 25% of the boundary concentration value as the adsorption coefficient increases from 0 to 1.5 mL/g. Overall, consolidation exhibits greater sensitivity to parameter variations than solute transport in these cases.</p>\n </div>","PeriodicalId":13786,"journal":{"name":"International Journal for Numerical and Analytical Methods in Geomechanics","volume":"49 15","pages":"3509-3530"},"PeriodicalIF":3.6000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Numerical Model for Coupled Large-Strain Consolidation and Solute Transport in Clayey Soils Considering Chemico-Osmotic and Creep Deformation\",\"authors\":\"Peng-Lin Li, Ding-Bao Song, Zhen-Yu Yin, Jian-Hua Yin\",\"doi\":\"10.1002/nag.70030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Contaminated geomaterials in CDFs (confined disposal facilities) and CCLs (compacted clay layers) typically undergo a long-term process involving coupled finite strain consolidation and solute transport, posing challenges for fully coupled modeling. To fill this research gap, a novel finite strain consolidation-solute transport model incorporating chemico-osmotic and creep effects is developed. The predictive accuracy of the model is verified through comparisons with existing analytical and numerical solute transport models with consolidation effect, a finite-strain consolidation model, and a small-strain HMC (hydro-mechanical-chemo) model. The model effectively replicates oedometer tests with one-step and three-step salinization, revealing significant volume changes (15.6% and 5.74% for two tests) due to chemical loading, even larger than those (5.31% and 5.13%) due to mechanical loading. Finally, parametric studies highlight the influence of creep, compressibility, boundary conditions, initial concentration distribution, and adsorption, demonstrating that chemico-osmotic effects can generate large negative pore pressures (50% of initial pore pressure) and average consolidation degree (about 140%). Compared with consolidation-related parameters, the adsorption coefficient has a more noticeable effect on solute transport, leading to bottom concentration values ranging from 54% to 25% of the boundary concentration value as the adsorption coefficient increases from 0 to 1.5 mL/g. Overall, consolidation exhibits greater sensitivity to parameter variations than solute transport in these cases.</p>\\n </div>\",\"PeriodicalId\":13786,\"journal\":{\"name\":\"International Journal for Numerical and Analytical Methods in Geomechanics\",\"volume\":\"49 15\",\"pages\":\"3509-3530\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Numerical and Analytical Methods in Geomechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/nag.70030\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical and Analytical Methods in Geomechanics","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nag.70030","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
A Novel Numerical Model for Coupled Large-Strain Consolidation and Solute Transport in Clayey Soils Considering Chemico-Osmotic and Creep Deformation
Contaminated geomaterials in CDFs (confined disposal facilities) and CCLs (compacted clay layers) typically undergo a long-term process involving coupled finite strain consolidation and solute transport, posing challenges for fully coupled modeling. To fill this research gap, a novel finite strain consolidation-solute transport model incorporating chemico-osmotic and creep effects is developed. The predictive accuracy of the model is verified through comparisons with existing analytical and numerical solute transport models with consolidation effect, a finite-strain consolidation model, and a small-strain HMC (hydro-mechanical-chemo) model. The model effectively replicates oedometer tests with one-step and three-step salinization, revealing significant volume changes (15.6% and 5.74% for two tests) due to chemical loading, even larger than those (5.31% and 5.13%) due to mechanical loading. Finally, parametric studies highlight the influence of creep, compressibility, boundary conditions, initial concentration distribution, and adsorption, demonstrating that chemico-osmotic effects can generate large negative pore pressures (50% of initial pore pressure) and average consolidation degree (about 140%). Compared with consolidation-related parameters, the adsorption coefficient has a more noticeable effect on solute transport, leading to bottom concentration values ranging from 54% to 25% of the boundary concentration value as the adsorption coefficient increases from 0 to 1.5 mL/g. Overall, consolidation exhibits greater sensitivity to parameter variations than solute transport in these cases.
期刊介绍:
The journal welcomes manuscripts that substantially contribute to the understanding of the complex mechanical behaviour of geomaterials (soils, rocks, concrete, ice, snow, and powders), through innovative experimental techniques, and/or through the development of novel numerical or hybrid experimental/numerical modelling concepts in geomechanics. Topics of interest include instabilities and localization, interface and surface phenomena, fracture and failure, multi-physics and other time-dependent phenomena, micromechanics and multi-scale methods, and inverse analysis and stochastic methods. Papers related to energy and environmental issues are particularly welcome. The illustration of the proposed methods and techniques to engineering problems is encouraged. However, manuscripts dealing with applications of existing methods, or proposing incremental improvements to existing methods – in particular marginal extensions of existing analytical solutions or numerical methods – will not be considered for review.