超越1型模式:Brugada综合征的综合风险分层。

IF 2.6
Kwan Yau Kan, Aléchia Van Wyk, Toby Paterson, Naveen Ninan, Pawel Lysyganicz, Ishika Tyagi, Ravisankar Bhasi Lizi, Fayza Boukrid, Maha Alfaifi, Alka Mishra, Sai Vamshi Krishna Katraj, Vivetha Pooranachandran
{"title":"超越1型模式:Brugada综合征的综合风险分层。","authors":"Kwan Yau Kan, Aléchia Van Wyk, Toby Paterson, Naveen Ninan, Pawel Lysyganicz, Ishika Tyagi, Ravisankar Bhasi Lizi, Fayza Boukrid, Maha Alfaifi, Alka Mishra, Sai Vamshi Krishna Katraj, Vivetha Pooranachandran","doi":"10.1007/s10840-025-02101-z","DOIUrl":null,"url":null,"abstract":"<p><p>Brugada Syndrome (BrS) is an inherited cardiac ion channelopathy associated with an elevated risk of sudden cardiac death, particularly due to ventricular arrhythmias in structurally normal hearts. Affecting approximately 1 in 2,000 individuals, BrS is most prevalent among middle-aged males of Asian descent. Although diagnosis is based on the presence of a Type 1 electrocardiographic (ECG) pattern, either spontaneous or induced, accurately stratifying risk in asymptomatic and borderline patients remains a major clinical challenge. This review explores current and emerging approaches to BrS risk stratification, focusing on electrocardiographic, electrophysiological, imaging, and computational markers. Non-invasive ECG indicators such as the β-angle, fragmented QRS, S wave in lead I, early repolarisation, aVR sign, and transmural dispersion of repolarisation have demonstrated predictive value for arrhythmic events. Adjunctive tools like signal-averaged ECG, Holter monitoring, and exercise stress testing enhance diagnostic yield by capturing dynamic electrophysiological changes. In parallel, imaging modalities, particularly speckle-tracking echocardiography and cardiac magnetic resonance have revealed subclinical structural abnormalities in the right ventricular outflow tract and atria, challenging the paradigm of BrS as a purely electrical disorder. Invasive electrophysiological studies and substrate mapping have further clarified the anatomical basis of arrhythmogenesis, while risk scoring systems (e.g., Sieira, BRUGADA-RISK, PAT) and machine learning models offer new avenues for personalised risk assessment. Together, these advances underscore the importance of an integrated, multimodal approach to BrS risk stratification. Optimising these strategies is essential to guide implantable cardioverter-defibrillator decisions and improve outcomes in patients vulnerable to life-threatening arrhythmias.</p>","PeriodicalId":520675,"journal":{"name":"Journal of interventional cardiac electrophysiology : an international journal of arrhythmias and pacing","volume":" ","pages":"1771-1790"},"PeriodicalIF":2.6000,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12476449/pdf/","citationCount":"0","resultStr":"{\"title\":\"Beyond the type 1 pattern: comprehensive risk stratification in Brugada syndrome.\",\"authors\":\"Kwan Yau Kan, Aléchia Van Wyk, Toby Paterson, Naveen Ninan, Pawel Lysyganicz, Ishika Tyagi, Ravisankar Bhasi Lizi, Fayza Boukrid, Maha Alfaifi, Alka Mishra, Sai Vamshi Krishna Katraj, Vivetha Pooranachandran\",\"doi\":\"10.1007/s10840-025-02101-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Brugada Syndrome (BrS) is an inherited cardiac ion channelopathy associated with an elevated risk of sudden cardiac death, particularly due to ventricular arrhythmias in structurally normal hearts. Affecting approximately 1 in 2,000 individuals, BrS is most prevalent among middle-aged males of Asian descent. Although diagnosis is based on the presence of a Type 1 electrocardiographic (ECG) pattern, either spontaneous or induced, accurately stratifying risk in asymptomatic and borderline patients remains a major clinical challenge. This review explores current and emerging approaches to BrS risk stratification, focusing on electrocardiographic, electrophysiological, imaging, and computational markers. Non-invasive ECG indicators such as the β-angle, fragmented QRS, S wave in lead I, early repolarisation, aVR sign, and transmural dispersion of repolarisation have demonstrated predictive value for arrhythmic events. Adjunctive tools like signal-averaged ECG, Holter monitoring, and exercise stress testing enhance diagnostic yield by capturing dynamic electrophysiological changes. In parallel, imaging modalities, particularly speckle-tracking echocardiography and cardiac magnetic resonance have revealed subclinical structural abnormalities in the right ventricular outflow tract and atria, challenging the paradigm of BrS as a purely electrical disorder. Invasive electrophysiological studies and substrate mapping have further clarified the anatomical basis of arrhythmogenesis, while risk scoring systems (e.g., Sieira, BRUGADA-RISK, PAT) and machine learning models offer new avenues for personalised risk assessment. Together, these advances underscore the importance of an integrated, multimodal approach to BrS risk stratification. Optimising these strategies is essential to guide implantable cardioverter-defibrillator decisions and improve outcomes in patients vulnerable to life-threatening arrhythmias.</p>\",\"PeriodicalId\":520675,\"journal\":{\"name\":\"Journal of interventional cardiac electrophysiology : an international journal of arrhythmias and pacing\",\"volume\":\" \",\"pages\":\"1771-1790\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12476449/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of interventional cardiac electrophysiology : an international journal of arrhythmias and pacing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10840-025-02101-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of interventional cardiac electrophysiology : an international journal of arrhythmias and pacing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10840-025-02101-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/6 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Brugada综合征(BrS)是一种遗传性心脏离子通道病变,与心源性猝死风险升高相关,特别是在结构正常的心脏中,由室性心律失常引起。大约每2000人中就有1人受BrS影响,BrS在亚洲裔中年男性中最为普遍。尽管诊断是基于1型心电图(ECG)模式的存在,无论是自发的还是诱发的,但在无症状和边缘患者中准确分层风险仍然是一个主要的临床挑战。这篇综述探讨了目前和新兴的BrS风险分层方法,重点是心电图、电生理、成像和计算标记。无创心电图指标,如β角、碎片化QRS、导联I段S波、早期复极、aVR征象、复极跨壁弥散等,已显示出对心律失常事件的预测价值。辅助工具,如信号平均心电图、动态心电图监测和运动应激测试,通过捕捉动态电生理变化来提高诊断率。同时,成像方式,特别是斑点跟踪超声心动图和心脏磁共振显示了右心室流出道和心房的亚临床结构异常,挑战了BrS作为纯电障碍的范式。有创性电生理研究和底物定位进一步阐明了心律失常发生的解剖学基础,而风险评分系统(如siira、BRUGADA-RISK、PAT)和机器学习模型为个性化风险评估提供了新的途径。总之,这些进展强调了对BrS风险分层采取综合、多模式方法的重要性。优化这些策略对于指导植入式心律转复除颤器的决策和改善危及生命的心律失常患者的预后至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Beyond the type 1 pattern: comprehensive risk stratification in Brugada syndrome.

Beyond the type 1 pattern: comprehensive risk stratification in Brugada syndrome.

Beyond the type 1 pattern: comprehensive risk stratification in Brugada syndrome.

Beyond the type 1 pattern: comprehensive risk stratification in Brugada syndrome.

Brugada Syndrome (BrS) is an inherited cardiac ion channelopathy associated with an elevated risk of sudden cardiac death, particularly due to ventricular arrhythmias in structurally normal hearts. Affecting approximately 1 in 2,000 individuals, BrS is most prevalent among middle-aged males of Asian descent. Although diagnosis is based on the presence of a Type 1 electrocardiographic (ECG) pattern, either spontaneous or induced, accurately stratifying risk in asymptomatic and borderline patients remains a major clinical challenge. This review explores current and emerging approaches to BrS risk stratification, focusing on electrocardiographic, electrophysiological, imaging, and computational markers. Non-invasive ECG indicators such as the β-angle, fragmented QRS, S wave in lead I, early repolarisation, aVR sign, and transmural dispersion of repolarisation have demonstrated predictive value for arrhythmic events. Adjunctive tools like signal-averaged ECG, Holter monitoring, and exercise stress testing enhance diagnostic yield by capturing dynamic electrophysiological changes. In parallel, imaging modalities, particularly speckle-tracking echocardiography and cardiac magnetic resonance have revealed subclinical structural abnormalities in the right ventricular outflow tract and atria, challenging the paradigm of BrS as a purely electrical disorder. Invasive electrophysiological studies and substrate mapping have further clarified the anatomical basis of arrhythmogenesis, while risk scoring systems (e.g., Sieira, BRUGADA-RISK, PAT) and machine learning models offer new avenues for personalised risk assessment. Together, these advances underscore the importance of an integrated, multimodal approach to BrS risk stratification. Optimising these strategies is essential to guide implantable cardioverter-defibrillator decisions and improve outcomes in patients vulnerable to life-threatening arrhythmias.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信