虚拟脑双胞胎刺激癫痫。

IF 18.3 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Huifang E. Wang, Borana Dollomaja, Paul Triebkorn, Gian Marco Duma, Adam Williamson, Julia Makhalova, Jean-Didier Lemarechal, Fabrice Bartolomei, Viktor Jirsa
{"title":"虚拟脑双胞胎刺激癫痫。","authors":"Huifang E. Wang, Borana Dollomaja, Paul Triebkorn, Gian Marco Duma, Adam Williamson, Julia Makhalova, Jean-Didier Lemarechal, Fabrice Bartolomei, Viktor Jirsa","doi":"10.1038/s43588-025-00841-6","DOIUrl":null,"url":null,"abstract":"Estimating the epileptogenic zone network (EZN) is an important part of the diagnosis of drug-resistant focal epilepsy and has a pivotal role in treatment and intervention. Virtual brain twins provide a modeling method for personalized diagnosis and treatment. They integrate patient-specific brain topography with structural connectivity from anatomical neuroimaging such as magnetic resonance imaging, and dynamic activity from functional recordings such as electroencephalography (EEG) and stereo-EEG (SEEG). Seizures show rich spatial and temporal features in functional recordings, which can be exploited to estimate the EZN. Stimulation-induced seizures can provide important and complementary information. Here we consider invasive SEEG stimulation and non-invasive temporal interference stimulation as a complementary approach. This paper offers a high-resolution virtual brain twin framework for EZN diagnosis based on stimulation-induced seizures. It provides an important methodological and conceptual basis to make the transition from invasive to non-invasive diagnosis and treatment of drug-resistant focal epilepsy. A high-resolution virtual brain twin approach is proposed using stimulation-induced seizures to estimate the epileptogenic network, offering a step toward non-invasive diagnosis and treatment of drug-resistant focal epilepsy.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"5 9","pages":"754-768"},"PeriodicalIF":18.3000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s43588-025-00841-6.pdf","citationCount":"0","resultStr":"{\"title\":\"Virtual brain twins for stimulation in epilepsy\",\"authors\":\"Huifang E. Wang, Borana Dollomaja, Paul Triebkorn, Gian Marco Duma, Adam Williamson, Julia Makhalova, Jean-Didier Lemarechal, Fabrice Bartolomei, Viktor Jirsa\",\"doi\":\"10.1038/s43588-025-00841-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Estimating the epileptogenic zone network (EZN) is an important part of the diagnosis of drug-resistant focal epilepsy and has a pivotal role in treatment and intervention. Virtual brain twins provide a modeling method for personalized diagnosis and treatment. They integrate patient-specific brain topography with structural connectivity from anatomical neuroimaging such as magnetic resonance imaging, and dynamic activity from functional recordings such as electroencephalography (EEG) and stereo-EEG (SEEG). Seizures show rich spatial and temporal features in functional recordings, which can be exploited to estimate the EZN. Stimulation-induced seizures can provide important and complementary information. Here we consider invasive SEEG stimulation and non-invasive temporal interference stimulation as a complementary approach. This paper offers a high-resolution virtual brain twin framework for EZN diagnosis based on stimulation-induced seizures. It provides an important methodological and conceptual basis to make the transition from invasive to non-invasive diagnosis and treatment of drug-resistant focal epilepsy. A high-resolution virtual brain twin approach is proposed using stimulation-induced seizures to estimate the epileptogenic network, offering a step toward non-invasive diagnosis and treatment of drug-resistant focal epilepsy.\",\"PeriodicalId\":74246,\"journal\":{\"name\":\"Nature computational science\",\"volume\":\"5 9\",\"pages\":\"754-768\"},\"PeriodicalIF\":18.3000,\"publicationDate\":\"2025-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.comhttps://www.nature.com/articles/s43588-025-00841-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature computational science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s43588-025-00841-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43588-025-00841-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

癫痫发生区网络(EZN)的估算是耐药局灶性癫痫诊断的重要组成部分,在治疗和干预中具有举足轻重的作用。虚拟脑双胞胎为个性化诊断和治疗提供了一种建模方法。他们将患者特定的大脑地形与解剖学神经成像(如磁共振成像)的结构连接,以及脑电图(EEG)和立体脑电图(SEEG)等功能记录的动态活动结合起来。癫痫发作在功能记录中显示出丰富的空间和时间特征,这可以用来估计EZN。刺激诱发的癫痫发作可以提供重要的补充信息。在这里,我们考虑侵入性SEEG刺激和非侵入性颞叶干扰刺激作为互补的方法。本文提出了一个高分辨率的虚拟脑双胞胎框架,用于刺激诱发癫痫的EZN诊断。这为耐药局灶性癫痫的诊断和治疗从有创向无创过渡提供了重要的方法和观念基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Virtual brain twins for stimulation in epilepsy

Virtual brain twins for stimulation in epilepsy
Estimating the epileptogenic zone network (EZN) is an important part of the diagnosis of drug-resistant focal epilepsy and has a pivotal role in treatment and intervention. Virtual brain twins provide a modeling method for personalized diagnosis and treatment. They integrate patient-specific brain topography with structural connectivity from anatomical neuroimaging such as magnetic resonance imaging, and dynamic activity from functional recordings such as electroencephalography (EEG) and stereo-EEG (SEEG). Seizures show rich spatial and temporal features in functional recordings, which can be exploited to estimate the EZN. Stimulation-induced seizures can provide important and complementary information. Here we consider invasive SEEG stimulation and non-invasive temporal interference stimulation as a complementary approach. This paper offers a high-resolution virtual brain twin framework for EZN diagnosis based on stimulation-induced seizures. It provides an important methodological and conceptual basis to make the transition from invasive to non-invasive diagnosis and treatment of drug-resistant focal epilepsy. A high-resolution virtual brain twin approach is proposed using stimulation-induced seizures to estimate the epileptogenic network, offering a step toward non-invasive diagnosis and treatment of drug-resistant focal epilepsy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信