Nyzil Massey, Suraj S Vasanthi, Claire Holtkamp, Christina Meyer, Nikhil S Rao, Luis G Gimenez-Lirola, Chong Wang, Hyunmook Im, Avinash S Bevoor, Sridhar Kannurpatti, Thimmasettappa Thippeswamy
{"title":"减轻有机磷神经毒剂索曼(GD)引起的长期神经毒性:Saracatinib,一种Src酪氨酸激酶抑制剂,作为潜在的对策。","authors":"Nyzil Massey, Suraj S Vasanthi, Claire Holtkamp, Christina Meyer, Nikhil S Rao, Luis G Gimenez-Lirola, Chong Wang, Hyunmook Im, Avinash S Bevoor, Sridhar Kannurpatti, Thimmasettappa Thippeswamy","doi":"10.1186/s12974-025-03520-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Acute exposure to soman (GD), an organophosphate nerve agent (OPNA), irreversibly inhibits acetylcholinesterase (AChE), induces seizures, and could be fatal if not treated immediately. Existing medical countermeasures (MCMs- atropine, oximes, and benzodiazepines) mitigate the acute life-threatening cholinergic symptoms but have limited protection against long-term neurological consequences in survivors. This indicates a need for an effective adjunct therapy to mitigate cognitive, behavioral, and brain pathology associated with OPNA exposure. Saracatinib (SAR), a selective Src tyrosine kinase inhibitor, has emerged as a potential candidate, given its protective properties in experimental models of excitotoxicity and neuroinflammation. Here, we evaluate the therapeutic efficacy of SAR in mitigating long-term neurological deficits triggered by acute exposure to soman in a rat model.</p><p><strong>Methods: </strong>Mixed-sex adult Sprague Dawley rats were exposed to soman (132 μg/kg, s.c.) and immediately treated with atropine (2 mg/kg, i.m.) and HI-6 (125 mg/kg, i.m.). Seizure severity was quantified for an hour before administering midazolam (3 mg/kg, i.m.). One-hour post-midazolam, SAR/vehicle was administered orally for a week and in the diet for 17 weeks. After behavioral testing, brain MRI, and EEG acquisition, animals were perfused with 4% paraformaldehyde 18 weeks post-soman. Serum and cerebrospinal fluid were collected for nitrooxidative markers and proinflammatory cytokine. Brains were processed for neuroinflammation and neurodegeneration markers.</p><p><strong>Results: </strong>SAR treatment attenuated the soman-induced anxiety/fear-like behavioral changes and motor impairment and modulated the severity of spontaneous seizures. Despite improved hippocampal functional connectivity (fMRI), SAR did not mitigate soman-induced cognitive deficits at 5-7 weeks. However, 18 weeks of SAR treatment demonstrated anti-inflammatory and antioxidant properties, mitigated reactive gliosis and neurodegeneration, and protected somatostatin inhibitory neurons. The glial scars in the amygdala were reduced in SAR-treated animals compared to the vehicle-treated group.</p><p><strong>Conclusions: </strong>Long-term SAR treatment revealed disease-modifying effects by protecting the brain from soman induced neuroinflammation and neurodegeneration, while also reducing severity of spontaneous seizures. Furthermore, SAR mitigated some soman induced behavioral impairments and brain MRI. These findings highlight the therapeutic potential of Src tyrosine kinase inhibition in soman-induced chronic neurotoxicity.</p>","PeriodicalId":16577,"journal":{"name":"Journal of Neuroinflammation","volume":"22 1","pages":"199"},"PeriodicalIF":10.1000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12326679/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mitigating organophosphate nerve agent, soman (GD), induced long-term neurotoxicity: Saracatinib, a Src Tyrosine Kinase inhibitor, as a potential countermeasure.\",\"authors\":\"Nyzil Massey, Suraj S Vasanthi, Claire Holtkamp, Christina Meyer, Nikhil S Rao, Luis G Gimenez-Lirola, Chong Wang, Hyunmook Im, Avinash S Bevoor, Sridhar Kannurpatti, Thimmasettappa Thippeswamy\",\"doi\":\"10.1186/s12974-025-03520-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Acute exposure to soman (GD), an organophosphate nerve agent (OPNA), irreversibly inhibits acetylcholinesterase (AChE), induces seizures, and could be fatal if not treated immediately. Existing medical countermeasures (MCMs- atropine, oximes, and benzodiazepines) mitigate the acute life-threatening cholinergic symptoms but have limited protection against long-term neurological consequences in survivors. This indicates a need for an effective adjunct therapy to mitigate cognitive, behavioral, and brain pathology associated with OPNA exposure. Saracatinib (SAR), a selective Src tyrosine kinase inhibitor, has emerged as a potential candidate, given its protective properties in experimental models of excitotoxicity and neuroinflammation. Here, we evaluate the therapeutic efficacy of SAR in mitigating long-term neurological deficits triggered by acute exposure to soman in a rat model.</p><p><strong>Methods: </strong>Mixed-sex adult Sprague Dawley rats were exposed to soman (132 μg/kg, s.c.) and immediately treated with atropine (2 mg/kg, i.m.) and HI-6 (125 mg/kg, i.m.). Seizure severity was quantified for an hour before administering midazolam (3 mg/kg, i.m.). One-hour post-midazolam, SAR/vehicle was administered orally for a week and in the diet for 17 weeks. After behavioral testing, brain MRI, and EEG acquisition, animals were perfused with 4% paraformaldehyde 18 weeks post-soman. Serum and cerebrospinal fluid were collected for nitrooxidative markers and proinflammatory cytokine. Brains were processed for neuroinflammation and neurodegeneration markers.</p><p><strong>Results: </strong>SAR treatment attenuated the soman-induced anxiety/fear-like behavioral changes and motor impairment and modulated the severity of spontaneous seizures. Despite improved hippocampal functional connectivity (fMRI), SAR did not mitigate soman-induced cognitive deficits at 5-7 weeks. However, 18 weeks of SAR treatment demonstrated anti-inflammatory and antioxidant properties, mitigated reactive gliosis and neurodegeneration, and protected somatostatin inhibitory neurons. The glial scars in the amygdala were reduced in SAR-treated animals compared to the vehicle-treated group.</p><p><strong>Conclusions: </strong>Long-term SAR treatment revealed disease-modifying effects by protecting the brain from soman induced neuroinflammation and neurodegeneration, while also reducing severity of spontaneous seizures. Furthermore, SAR mitigated some soman induced behavioral impairments and brain MRI. These findings highlight the therapeutic potential of Src tyrosine kinase inhibition in soman-induced chronic neurotoxicity.</p>\",\"PeriodicalId\":16577,\"journal\":{\"name\":\"Journal of Neuroinflammation\",\"volume\":\"22 1\",\"pages\":\"199\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2025-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12326679/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuroinflammation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12974-025-03520-5\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroinflammation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12974-025-03520-5","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Mitigating organophosphate nerve agent, soman (GD), induced long-term neurotoxicity: Saracatinib, a Src Tyrosine Kinase inhibitor, as a potential countermeasure.
Background: Acute exposure to soman (GD), an organophosphate nerve agent (OPNA), irreversibly inhibits acetylcholinesterase (AChE), induces seizures, and could be fatal if not treated immediately. Existing medical countermeasures (MCMs- atropine, oximes, and benzodiazepines) mitigate the acute life-threatening cholinergic symptoms but have limited protection against long-term neurological consequences in survivors. This indicates a need for an effective adjunct therapy to mitigate cognitive, behavioral, and brain pathology associated with OPNA exposure. Saracatinib (SAR), a selective Src tyrosine kinase inhibitor, has emerged as a potential candidate, given its protective properties in experimental models of excitotoxicity and neuroinflammation. Here, we evaluate the therapeutic efficacy of SAR in mitigating long-term neurological deficits triggered by acute exposure to soman in a rat model.
Methods: Mixed-sex adult Sprague Dawley rats were exposed to soman (132 μg/kg, s.c.) and immediately treated with atropine (2 mg/kg, i.m.) and HI-6 (125 mg/kg, i.m.). Seizure severity was quantified for an hour before administering midazolam (3 mg/kg, i.m.). One-hour post-midazolam, SAR/vehicle was administered orally for a week and in the diet for 17 weeks. After behavioral testing, brain MRI, and EEG acquisition, animals were perfused with 4% paraformaldehyde 18 weeks post-soman. Serum and cerebrospinal fluid were collected for nitrooxidative markers and proinflammatory cytokine. Brains were processed for neuroinflammation and neurodegeneration markers.
Results: SAR treatment attenuated the soman-induced anxiety/fear-like behavioral changes and motor impairment and modulated the severity of spontaneous seizures. Despite improved hippocampal functional connectivity (fMRI), SAR did not mitigate soman-induced cognitive deficits at 5-7 weeks. However, 18 weeks of SAR treatment demonstrated anti-inflammatory and antioxidant properties, mitigated reactive gliosis and neurodegeneration, and protected somatostatin inhibitory neurons. The glial scars in the amygdala were reduced in SAR-treated animals compared to the vehicle-treated group.
Conclusions: Long-term SAR treatment revealed disease-modifying effects by protecting the brain from soman induced neuroinflammation and neurodegeneration, while also reducing severity of spontaneous seizures. Furthermore, SAR mitigated some soman induced behavioral impairments and brain MRI. These findings highlight the therapeutic potential of Src tyrosine kinase inhibition in soman-induced chronic neurotoxicity.
期刊介绍:
The Journal of Neuroinflammation is a peer-reviewed, open access publication that emphasizes the interaction between the immune system, particularly the innate immune system, and the nervous system. It covers various aspects, including the involvement of CNS immune mediators like microglia and astrocytes, the cytokines and chemokines they produce, and the influence of peripheral neuro-immune interactions, T cells, monocytes, complement proteins, acute phase proteins, oxidative injury, and related molecular processes.
Neuroinflammation is a rapidly expanding field that has significantly enhanced our knowledge of chronic neurological diseases. It attracts researchers from diverse disciplines such as pathology, biochemistry, molecular biology, genetics, clinical medicine, and epidemiology. Substantial contributions to this field have been made through studies involving populations, patients, postmortem tissues, animal models, and in vitro systems.
The Journal of Neuroinflammation consolidates research that centers around common pathogenic processes. It serves as a platform for integrative reviews and commentaries in this field.