{"title":"用SEC-SWAXS和NMR鉴定转甲状腺素与托卡彭和他法米地配合物的溶液结构和稳定性。","authors":"Orion Shih, Yu-Chen Feng, Sashank Agrawal, Kuei-Fen Liao, Yi-Qi Yeh, Je-Wei Chang, Tsyr-Yan Yu, U-Ser Jeng","doi":"10.1107/S1600576725004716","DOIUrl":null,"url":null,"abstract":"<p><p>Human transthyretin (TTR) is a homotetrameric protein involved in transporting thyroxine (T4) and retinol-binding protein within serum and cerebrospinal fluid. The disassociation of TTR's tetrameric structure can lead to the formation of biologically toxic TTR amyloid fibrils. Tolcapone, a small molecule currently under clinical trial, has shown potential as a TTR stabilizer and may act as an alternative to tafamidis, the conventional therapeutic agent used to prevent TTR dissociation. Using size-exclusion-chromatography-based small- and wide-angle X-ray scattering (SEC-SWAXS) complemented by nuclear magnetic resonance (NMR) spectroscopy, this study reveals the solution conformations of Apo-TTR and TTR complexed with tolcapone and tafamidis. Our results indicate that both compounds can bind similarly to the two T4 sites of TTR, leading to a small increase in the radius of gyration from 24.3 ± 0.1 Å (Apo-TTR) to 25.8 ± 0.1 Å. Consequently, both compounds largely stabilize the TTR against dissociation, denaturation and oligomerization up to 8 <i>M</i> urea, whereas Apo-TTR starts to denature at this concentration and forms larger oligomers at 8 <i>M</i> urea. Additionally, under a reduced TTR-drug mixing ratio of 1:1, which targets only one T4 site, tafamidis more effectively stabilizes the TTR tetrameric conformation at 8 <i>M</i> urea, a difference attributed to its higher affinity for the first T4 site. These results illustrate an effective strategy for investigating protein-drug interactions by examining the solution conformations of protein-drug complexes under physiological conditions, providing structural hints to the design of therapeutic agents targeting TTR.</p>","PeriodicalId":14950,"journal":{"name":"Journal of Applied Crystallography","volume":"58 Pt 4","pages":"1373-1383"},"PeriodicalIF":2.8000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12321038/pdf/","citationCount":"0","resultStr":"{\"title\":\"Differentiating the solution structures and stability of transthyretin tetramer complexed with tolcapone and tafamidis using SEC-SWAXS and NMR.\",\"authors\":\"Orion Shih, Yu-Chen Feng, Sashank Agrawal, Kuei-Fen Liao, Yi-Qi Yeh, Je-Wei Chang, Tsyr-Yan Yu, U-Ser Jeng\",\"doi\":\"10.1107/S1600576725004716\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Human transthyretin (TTR) is a homotetrameric protein involved in transporting thyroxine (T4) and retinol-binding protein within serum and cerebrospinal fluid. The disassociation of TTR's tetrameric structure can lead to the formation of biologically toxic TTR amyloid fibrils. Tolcapone, a small molecule currently under clinical trial, has shown potential as a TTR stabilizer and may act as an alternative to tafamidis, the conventional therapeutic agent used to prevent TTR dissociation. Using size-exclusion-chromatography-based small- and wide-angle X-ray scattering (SEC-SWAXS) complemented by nuclear magnetic resonance (NMR) spectroscopy, this study reveals the solution conformations of Apo-TTR and TTR complexed with tolcapone and tafamidis. Our results indicate that both compounds can bind similarly to the two T4 sites of TTR, leading to a small increase in the radius of gyration from 24.3 ± 0.1 Å (Apo-TTR) to 25.8 ± 0.1 Å. Consequently, both compounds largely stabilize the TTR against dissociation, denaturation and oligomerization up to 8 <i>M</i> urea, whereas Apo-TTR starts to denature at this concentration and forms larger oligomers at 8 <i>M</i> urea. Additionally, under a reduced TTR-drug mixing ratio of 1:1, which targets only one T4 site, tafamidis more effectively stabilizes the TTR tetrameric conformation at 8 <i>M</i> urea, a difference attributed to its higher affinity for the first T4 site. These results illustrate an effective strategy for investigating protein-drug interactions by examining the solution conformations of protein-drug complexes under physiological conditions, providing structural hints to the design of therapeutic agents targeting TTR.</p>\",\"PeriodicalId\":14950,\"journal\":{\"name\":\"Journal of Applied Crystallography\",\"volume\":\"58 Pt 4\",\"pages\":\"1373-1383\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12321038/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Crystallography\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1107/S1600576725004716\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Crystallography","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1107/S1600576725004716","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
摘要
人甲状腺转甲素(TTR)是一种同四聚体蛋白,参与血清和脑脊液中甲状腺素(T4)和视黄醇结合蛋白的运输。TTR四聚体结构的分离可导致生物毒性TTR淀粉样原纤维的形成。Tolcapone是一种目前正在进行临床试验的小分子,已显示出作为TTR稳定剂的潜力,并可能作为防止TTR解离的传统治疗剂tafamidis的替代品。利用基于尺寸不相容色谱的小广角x射线散射(SEC-SWAXS)和核磁共振(NMR)技术,研究了Apo-TTR和TTR与tolcapone和tafamidis络合的溶液构象。我们的研究结果表明,这两种化合物都能与TTR的两个T4位点相似地结合,导致旋转半径从24.3±0.1 Å (Apo-TTR)小幅增加到25.8±0.1 Å。因此,这两种化合物在很大程度上稳定了TTR,防止了高达8 M尿素的解离、变性和低聚,而载脂蛋白TTR在这个浓度下开始变性,并在8 M尿素形成更大的低聚物。此外,当TTR-药物混合比降低至1:1时,仅靶向一个T4位点,他法米地更有效地稳定了8 M尿素处的TTR四聚体构象,这一差异归因于其对第一个T4位点的亲和力更高。这些结果说明了通过检测生理条件下蛋白质-药物复合物的溶液构象来研究蛋白质-药物相互作用的有效策略,为设计靶向TTR的治疗剂提供了结构提示。
Differentiating the solution structures and stability of transthyretin tetramer complexed with tolcapone and tafamidis using SEC-SWAXS and NMR.
Human transthyretin (TTR) is a homotetrameric protein involved in transporting thyroxine (T4) and retinol-binding protein within serum and cerebrospinal fluid. The disassociation of TTR's tetrameric structure can lead to the formation of biologically toxic TTR amyloid fibrils. Tolcapone, a small molecule currently under clinical trial, has shown potential as a TTR stabilizer and may act as an alternative to tafamidis, the conventional therapeutic agent used to prevent TTR dissociation. Using size-exclusion-chromatography-based small- and wide-angle X-ray scattering (SEC-SWAXS) complemented by nuclear magnetic resonance (NMR) spectroscopy, this study reveals the solution conformations of Apo-TTR and TTR complexed with tolcapone and tafamidis. Our results indicate that both compounds can bind similarly to the two T4 sites of TTR, leading to a small increase in the radius of gyration from 24.3 ± 0.1 Å (Apo-TTR) to 25.8 ± 0.1 Å. Consequently, both compounds largely stabilize the TTR against dissociation, denaturation and oligomerization up to 8 M urea, whereas Apo-TTR starts to denature at this concentration and forms larger oligomers at 8 M urea. Additionally, under a reduced TTR-drug mixing ratio of 1:1, which targets only one T4 site, tafamidis more effectively stabilizes the TTR tetrameric conformation at 8 M urea, a difference attributed to its higher affinity for the first T4 site. These results illustrate an effective strategy for investigating protein-drug interactions by examining the solution conformations of protein-drug complexes under physiological conditions, providing structural hints to the design of therapeutic agents targeting TTR.
期刊介绍:
Many research topics in condensed matter research, materials science and the life sciences make use of crystallographic methods to study crystalline and non-crystalline matter with neutrons, X-rays and electrons. Articles published in the Journal of Applied Crystallography focus on these methods and their use in identifying structural and diffusion-controlled phase transformations, structure-property relationships, structural changes of defects, interfaces and surfaces, etc. Developments of instrumentation and crystallographic apparatus, theory and interpretation, numerical analysis and other related subjects are also covered. The journal is the primary place where crystallographic computer program information is published.