Lukas Beddrich, Johanna K Jochum, Philipp Bender, Leonie Spitz, Andreas Wendl, Christian Franz, Sebastian Busch, Fanni Juranyi, Christian Pfleiderer, Olaf Soltwedel
{"title":"H2O的飞行时间和MIEZE中子能谱的比较。","authors":"Lukas Beddrich, Johanna K Jochum, Philipp Bender, Leonie Spitz, Andreas Wendl, Christian Franz, Sebastian Busch, Fanni Juranyi, Christian Pfleiderer, Olaf Soltwedel","doi":"10.1107/S1600576725003620","DOIUrl":null,"url":null,"abstract":"<p><p>We report a comparison of modulation of intensity with zero effort (MIEZE), a neutron spin-echo technique, and neutron time-of-flight (ToF) spectroscopy, a conventional neutron scattering method. The evaluation of the respective recorded signals, which can be described by the intermediate scattering function <i>I</i>(<i>Q</i>, τ) (MIEZE) and the dynamic structure factor <i>S</i>(<i>Q</i>, <i>E</i>) (ToF), involves a Fourier transformation that requires detailed knowledge of the detector efficiency, instrumental resolution, signal background and range of validity of the spin-echo approximation. It is demonstrated that data obtained from pure water align well within the framework presented here, thereby extending the applicability of the MIEZE technique beyond the spin-echo approximation and emphasizing the complementarity of the two methods. Computational methods, such as molecular dynamics simulations, are highlighted as essential for enhancing the understanding of complex systems. Together, MIEZE and ToF provide a powerful framework for investigating dynamic processes across different time and energy domains, with particular attention required to ensure identical sample geometries for meaningful comparisons.</p>","PeriodicalId":14950,"journal":{"name":"Journal of Applied Crystallography","volume":"58 Pt 4","pages":"1122-1137"},"PeriodicalIF":2.8000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12321016/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comparison of time-of-flight and MIEZE neutron spectroscopy of H<sub>2</sub>O.\",\"authors\":\"Lukas Beddrich, Johanna K Jochum, Philipp Bender, Leonie Spitz, Andreas Wendl, Christian Franz, Sebastian Busch, Fanni Juranyi, Christian Pfleiderer, Olaf Soltwedel\",\"doi\":\"10.1107/S1600576725003620\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We report a comparison of modulation of intensity with zero effort (MIEZE), a neutron spin-echo technique, and neutron time-of-flight (ToF) spectroscopy, a conventional neutron scattering method. The evaluation of the respective recorded signals, which can be described by the intermediate scattering function <i>I</i>(<i>Q</i>, τ) (MIEZE) and the dynamic structure factor <i>S</i>(<i>Q</i>, <i>E</i>) (ToF), involves a Fourier transformation that requires detailed knowledge of the detector efficiency, instrumental resolution, signal background and range of validity of the spin-echo approximation. It is demonstrated that data obtained from pure water align well within the framework presented here, thereby extending the applicability of the MIEZE technique beyond the spin-echo approximation and emphasizing the complementarity of the two methods. Computational methods, such as molecular dynamics simulations, are highlighted as essential for enhancing the understanding of complex systems. Together, MIEZE and ToF provide a powerful framework for investigating dynamic processes across different time and energy domains, with particular attention required to ensure identical sample geometries for meaningful comparisons.</p>\",\"PeriodicalId\":14950,\"journal\":{\"name\":\"Journal of Applied Crystallography\",\"volume\":\"58 Pt 4\",\"pages\":\"1122-1137\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12321016/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Crystallography\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1107/S1600576725003620\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Crystallography","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1107/S1600576725003620","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Comparison of time-of-flight and MIEZE neutron spectroscopy of H2O.
We report a comparison of modulation of intensity with zero effort (MIEZE), a neutron spin-echo technique, and neutron time-of-flight (ToF) spectroscopy, a conventional neutron scattering method. The evaluation of the respective recorded signals, which can be described by the intermediate scattering function I(Q, τ) (MIEZE) and the dynamic structure factor S(Q, E) (ToF), involves a Fourier transformation that requires detailed knowledge of the detector efficiency, instrumental resolution, signal background and range of validity of the spin-echo approximation. It is demonstrated that data obtained from pure water align well within the framework presented here, thereby extending the applicability of the MIEZE technique beyond the spin-echo approximation and emphasizing the complementarity of the two methods. Computational methods, such as molecular dynamics simulations, are highlighted as essential for enhancing the understanding of complex systems. Together, MIEZE and ToF provide a powerful framework for investigating dynamic processes across different time and energy domains, with particular attention required to ensure identical sample geometries for meaningful comparisons.
期刊介绍:
Many research topics in condensed matter research, materials science and the life sciences make use of crystallographic methods to study crystalline and non-crystalline matter with neutrons, X-rays and electrons. Articles published in the Journal of Applied Crystallography focus on these methods and their use in identifying structural and diffusion-controlled phase transformations, structure-property relationships, structural changes of defects, interfaces and surfaces, etc. Developments of instrumentation and crystallographic apparatus, theory and interpretation, numerical analysis and other related subjects are also covered. The journal is the primary place where crystallographic computer program information is published.