一种基于药物计量学的试验模拟框架,用于优化罕见神经系统疾病改善治疗的研究设计。

IF 3 3区 医学 Q2 PHARMACOLOGY & PHARMACY
Yevgen Ryeznik, Ralf-Dieter Hilgers, Nicole Heussen, Emmanuelle Comets, France Mentré, Niels Hendrickx, Mats O Karlsson, Andrew C Hooker, Alzahra Hamdan, Xiaomei Chen, Rebecca Schüle, Matthis Synofzik, Oleksandr Sverdlov
{"title":"一种基于药物计量学的试验模拟框架,用于优化罕见神经系统疾病改善治疗的研究设计。","authors":"Yevgen Ryeznik, Ralf-Dieter Hilgers, Nicole Heussen, Emmanuelle Comets, France Mentré, Niels Hendrickx, Mats O Karlsson, Andrew C Hooker, Alzahra Hamdan, Xiaomei Chen, Rebecca Schüle, Matthis Synofzik, Oleksandr Sverdlov","doi":"10.1002/psp4.70082","DOIUrl":null,"url":null,"abstract":"<p><p>The development of new treatments for rare neurological diseases (RNDs) may be very challenging due to limited natural history data, lack of relevant biomarkers and clinical endpoints, small and heterogeneous patient populations, and other complexities. A systematic approach is needed for comparing various design and analysis strategies to identify \"optimal\" approaches for a clinical trial in a chosen RND with the given resource constraints. For this purpose, we propose a pharmacometrics-informed clinical scenario evaluation framework (CSE-PMx), which includes some important research hallmarks relevant to RND clinical trials: a disease progression model for simulating individual longitudinal outcomes, the choice of a suitable randomization method for trial design, and an option to perform subsequent statistical analysis with randomization tests. We illustrate the utility of CSE-PMx for an exemplary randomized trial to compare the disease-modifying effect of an experimental treatment versus control in patients with Autosomal-Recessive Spastic Ataxia Charlevoix Saguenay (ARSACS). In the considered example, our simulation evidence suggests that a nonlinear mixed-effects model (NLMEM) with a population-based likelihood ratio test analysis is valid, robust, and more powerful than some conventional methods such as two-sample t-test, analysis of covariance (ANCOVA), or a mixed model with repeated measurements (MMRM). Our proposed framework is very flexible and generalizable to clinical research in other rare disease indications.</p>","PeriodicalId":10774,"journal":{"name":"CPT: Pharmacometrics & Systems Pharmacology","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Pharmacometrics-Informed Trial Simulation Framework for Optimizing Study Designs for Disease-Modifying Treatments in Rare Neurological Disorders.\",\"authors\":\"Yevgen Ryeznik, Ralf-Dieter Hilgers, Nicole Heussen, Emmanuelle Comets, France Mentré, Niels Hendrickx, Mats O Karlsson, Andrew C Hooker, Alzahra Hamdan, Xiaomei Chen, Rebecca Schüle, Matthis Synofzik, Oleksandr Sverdlov\",\"doi\":\"10.1002/psp4.70082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The development of new treatments for rare neurological diseases (RNDs) may be very challenging due to limited natural history data, lack of relevant biomarkers and clinical endpoints, small and heterogeneous patient populations, and other complexities. A systematic approach is needed for comparing various design and analysis strategies to identify \\\"optimal\\\" approaches for a clinical trial in a chosen RND with the given resource constraints. For this purpose, we propose a pharmacometrics-informed clinical scenario evaluation framework (CSE-PMx), which includes some important research hallmarks relevant to RND clinical trials: a disease progression model for simulating individual longitudinal outcomes, the choice of a suitable randomization method for trial design, and an option to perform subsequent statistical analysis with randomization tests. We illustrate the utility of CSE-PMx for an exemplary randomized trial to compare the disease-modifying effect of an experimental treatment versus control in patients with Autosomal-Recessive Spastic Ataxia Charlevoix Saguenay (ARSACS). In the considered example, our simulation evidence suggests that a nonlinear mixed-effects model (NLMEM) with a population-based likelihood ratio test analysis is valid, robust, and more powerful than some conventional methods such as two-sample t-test, analysis of covariance (ANCOVA), or a mixed model with repeated measurements (MMRM). Our proposed framework is very flexible and generalizable to clinical research in other rare disease indications.</p>\",\"PeriodicalId\":10774,\"journal\":{\"name\":\"CPT: Pharmacometrics & Systems Pharmacology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CPT: Pharmacometrics & Systems Pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/psp4.70082\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CPT: Pharmacometrics & Systems Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/psp4.70082","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

由于自然病史数据有限,缺乏相关生物标志物和临床终点,患者群体小且异质性,以及其他复杂性,罕见神经疾病(rnd)新疗法的开发可能非常具有挑战性。需要一种系统的方法来比较各种设计和分析策略,以确定在给定资源限制下选定RND进行临床试验的“最佳”方法。为此,我们提出了一个基于药物计量学的临床情景评估框架(CSE-PMx),其中包括与RND临床试验相关的一些重要研究特征:模拟个体纵向结果的疾病进展模型,试验设计的合适随机化方法的选择,以及通过随机化试验进行后续统计分析的选项。我们在一项典型的随机试验中说明了CSE-PMx的效用,以比较常染色体隐性痉挛性共济失调(ARSACS)患者的实验性治疗与对照组的疾病改善效果。在考虑的示例中,我们的模拟证据表明,具有基于总体的似然比检验分析的非线性混合效应模型(NLMEM)是有效的,稳健的,并且比一些传统方法(如双样本t检验,协方差分析(ANCOVA)或具有重复测量的混合模型(MMRM))更强大。我们提出的框架非常灵活,可推广到其他罕见病适应症的临床研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Pharmacometrics-Informed Trial Simulation Framework for Optimizing Study Designs for Disease-Modifying Treatments in Rare Neurological Disorders.

The development of new treatments for rare neurological diseases (RNDs) may be very challenging due to limited natural history data, lack of relevant biomarkers and clinical endpoints, small and heterogeneous patient populations, and other complexities. A systematic approach is needed for comparing various design and analysis strategies to identify "optimal" approaches for a clinical trial in a chosen RND with the given resource constraints. For this purpose, we propose a pharmacometrics-informed clinical scenario evaluation framework (CSE-PMx), which includes some important research hallmarks relevant to RND clinical trials: a disease progression model for simulating individual longitudinal outcomes, the choice of a suitable randomization method for trial design, and an option to perform subsequent statistical analysis with randomization tests. We illustrate the utility of CSE-PMx for an exemplary randomized trial to compare the disease-modifying effect of an experimental treatment versus control in patients with Autosomal-Recessive Spastic Ataxia Charlevoix Saguenay (ARSACS). In the considered example, our simulation evidence suggests that a nonlinear mixed-effects model (NLMEM) with a population-based likelihood ratio test analysis is valid, robust, and more powerful than some conventional methods such as two-sample t-test, analysis of covariance (ANCOVA), or a mixed model with repeated measurements (MMRM). Our proposed framework is very flexible and generalizable to clinical research in other rare disease indications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.00
自引率
11.40%
发文量
146
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信