{"title":"乳腺癌资源共享的可读性分析对患者教育和人工智能潜力的x含义。","authors":"Melanie J Wang, Aref Rastegar, Theodore A Kung","doi":"10.1007/s10549-025-07799-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Breast cancer remains a global public health burden. This study aimed to evaluate the readability of breast cancer articles shared on X (formerly Twitter) during Breast Cancer Awareness Month (October 2024), and it explores the possibility of using artificial intelligence (AI) to improve readability.</p><p><strong>Methods: </strong>We identified the top articles (n = 377) from posts containing #breastcancer on X during October 2024. Each article was analyzed using 9 established readability tests: Automated Readability Index (ARI), Coleman-Liau, Flesch-Kincaid, Flesch Reading Ease, FORCAST Readability Formula, Fry Graph, Gunning Fog Index, Raygor Readability Estimate, and Simple Measure of Gobbledygook (SMOG) Readability Formula. The study categorized sharing entities into five groups: academic medical centers, healthcare providers, government institutions, scientific journals, and all others. This comprehensive approach aimed to evaluate the readability of breast cancer articles across various sources during a critical awareness period of peak public engagement. A pilot study was simultaneously conducted using AI to improve readability. Statistical analysis was performed using SPSS.</p><p><strong>Results: </strong>A total of 377 articles shared by the following entities were analyzed: academic medical centers (35, 9.3%), healthcare providers (57, 15.2%), government institutions (21, 5.6%), scientific journals (63, 16.8%), and all others (199, 53.1%). Government institutions shared articles with the lowest average readability grade level (12.71 ± 0.79). Scientific journals (16.57 ± 0.09), healthcare providers (15.49 ± 0.32), all others (14.89 ± 0.17), and academic medical centers (13.56 ± 0.39) had higher average readability grade levels. Article types were also split into different categories: patient education (222, 58.9%), open-access journal (119, 31.5%), and full journal (37, 9.6%). Patient education articles (15.19 ± 0.17) had the lowest average readability grade level. Open-access and full journals had an average readability grade level of 16.65 ± 0.06 and 16.53 ± 0.10, respectively. The mean values for Flesch Reading Ease Score are patient education 38.14 ± 1.2, open-access journals 16.14 ± 0.89, full journals 17.69 ± 2.14. Of note, lower readability grade levels indicate easier-to-read text, while higher Flesch Reading Ease scores indicate more ease of reading. In a demonstration using AI to improve readability grade level of 5 sample articles, AI successfully lowered the average readability grade level from 12.58 ± 0.83 to 6.56 ± 0.28 (p < 0.001).</p><p><strong>Conclusions: </strong>Our findings highlight a critical gap between the recommended and actual readability levels of breast cancer information shared on a popular social media platform. While some institutions are producing more accessible content, there is a pressing need for standardization and improvement across all sources. To address this issue, sources may consider leveraging AI technology as a potential tool for creating patient resources with appropriate readability levels.</p>","PeriodicalId":9133,"journal":{"name":"Breast Cancer Research and Treatment","volume":" ","pages":"121-130"},"PeriodicalIF":3.0000,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12464108/pdf/","citationCount":"0","resultStr":"{\"title\":\"Readability analysis of breast cancer resources shared on X-implications for patient education and the potential of AI.\",\"authors\":\"Melanie J Wang, Aref Rastegar, Theodore A Kung\",\"doi\":\"10.1007/s10549-025-07799-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Breast cancer remains a global public health burden. This study aimed to evaluate the readability of breast cancer articles shared on X (formerly Twitter) during Breast Cancer Awareness Month (October 2024), and it explores the possibility of using artificial intelligence (AI) to improve readability.</p><p><strong>Methods: </strong>We identified the top articles (n = 377) from posts containing #breastcancer on X during October 2024. Each article was analyzed using 9 established readability tests: Automated Readability Index (ARI), Coleman-Liau, Flesch-Kincaid, Flesch Reading Ease, FORCAST Readability Formula, Fry Graph, Gunning Fog Index, Raygor Readability Estimate, and Simple Measure of Gobbledygook (SMOG) Readability Formula. The study categorized sharing entities into five groups: academic medical centers, healthcare providers, government institutions, scientific journals, and all others. This comprehensive approach aimed to evaluate the readability of breast cancer articles across various sources during a critical awareness period of peak public engagement. A pilot study was simultaneously conducted using AI to improve readability. Statistical analysis was performed using SPSS.</p><p><strong>Results: </strong>A total of 377 articles shared by the following entities were analyzed: academic medical centers (35, 9.3%), healthcare providers (57, 15.2%), government institutions (21, 5.6%), scientific journals (63, 16.8%), and all others (199, 53.1%). Government institutions shared articles with the lowest average readability grade level (12.71 ± 0.79). Scientific journals (16.57 ± 0.09), healthcare providers (15.49 ± 0.32), all others (14.89 ± 0.17), and academic medical centers (13.56 ± 0.39) had higher average readability grade levels. Article types were also split into different categories: patient education (222, 58.9%), open-access journal (119, 31.5%), and full journal (37, 9.6%). Patient education articles (15.19 ± 0.17) had the lowest average readability grade level. Open-access and full journals had an average readability grade level of 16.65 ± 0.06 and 16.53 ± 0.10, respectively. The mean values for Flesch Reading Ease Score are patient education 38.14 ± 1.2, open-access journals 16.14 ± 0.89, full journals 17.69 ± 2.14. Of note, lower readability grade levels indicate easier-to-read text, while higher Flesch Reading Ease scores indicate more ease of reading. In a demonstration using AI to improve readability grade level of 5 sample articles, AI successfully lowered the average readability grade level from 12.58 ± 0.83 to 6.56 ± 0.28 (p < 0.001).</p><p><strong>Conclusions: </strong>Our findings highlight a critical gap between the recommended and actual readability levels of breast cancer information shared on a popular social media platform. While some institutions are producing more accessible content, there is a pressing need for standardization and improvement across all sources. To address this issue, sources may consider leveraging AI technology as a potential tool for creating patient resources with appropriate readability levels.</p>\",\"PeriodicalId\":9133,\"journal\":{\"name\":\"Breast Cancer Research and Treatment\",\"volume\":\" \",\"pages\":\"121-130\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12464108/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Breast Cancer Research and Treatment\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10549-025-07799-z\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Breast Cancer Research and Treatment","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10549-025-07799-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
Readability analysis of breast cancer resources shared on X-implications for patient education and the potential of AI.
Purpose: Breast cancer remains a global public health burden. This study aimed to evaluate the readability of breast cancer articles shared on X (formerly Twitter) during Breast Cancer Awareness Month (October 2024), and it explores the possibility of using artificial intelligence (AI) to improve readability.
Methods: We identified the top articles (n = 377) from posts containing #breastcancer on X during October 2024. Each article was analyzed using 9 established readability tests: Automated Readability Index (ARI), Coleman-Liau, Flesch-Kincaid, Flesch Reading Ease, FORCAST Readability Formula, Fry Graph, Gunning Fog Index, Raygor Readability Estimate, and Simple Measure of Gobbledygook (SMOG) Readability Formula. The study categorized sharing entities into five groups: academic medical centers, healthcare providers, government institutions, scientific journals, and all others. This comprehensive approach aimed to evaluate the readability of breast cancer articles across various sources during a critical awareness period of peak public engagement. A pilot study was simultaneously conducted using AI to improve readability. Statistical analysis was performed using SPSS.
Results: A total of 377 articles shared by the following entities were analyzed: academic medical centers (35, 9.3%), healthcare providers (57, 15.2%), government institutions (21, 5.6%), scientific journals (63, 16.8%), and all others (199, 53.1%). Government institutions shared articles with the lowest average readability grade level (12.71 ± 0.79). Scientific journals (16.57 ± 0.09), healthcare providers (15.49 ± 0.32), all others (14.89 ± 0.17), and academic medical centers (13.56 ± 0.39) had higher average readability grade levels. Article types were also split into different categories: patient education (222, 58.9%), open-access journal (119, 31.5%), and full journal (37, 9.6%). Patient education articles (15.19 ± 0.17) had the lowest average readability grade level. Open-access and full journals had an average readability grade level of 16.65 ± 0.06 and 16.53 ± 0.10, respectively. The mean values for Flesch Reading Ease Score are patient education 38.14 ± 1.2, open-access journals 16.14 ± 0.89, full journals 17.69 ± 2.14. Of note, lower readability grade levels indicate easier-to-read text, while higher Flesch Reading Ease scores indicate more ease of reading. In a demonstration using AI to improve readability grade level of 5 sample articles, AI successfully lowered the average readability grade level from 12.58 ± 0.83 to 6.56 ± 0.28 (p < 0.001).
Conclusions: Our findings highlight a critical gap between the recommended and actual readability levels of breast cancer information shared on a popular social media platform. While some institutions are producing more accessible content, there is a pressing need for standardization and improvement across all sources. To address this issue, sources may consider leveraging AI technology as a potential tool for creating patient resources with appropriate readability levels.
期刊介绍:
Breast Cancer Research and Treatment provides the surgeon, radiotherapist, medical oncologist, endocrinologist, epidemiologist, immunologist or cell biologist investigating problems in breast cancer a single forum for communication. The journal creates a "market place" for breast cancer topics which cuts across all the usual lines of disciplines, providing a site for presenting pertinent investigations, and for discussing critical questions relevant to the entire field. It seeks to develop a new focus and new perspectives for all those concerned with breast cancer.