甜菜碱-同型半胱氨酸甲基转移酶通过bach1 - scd1 -油酸轴保护对乙酰氨基酚诱导的急性肝衰竭。

IF 8.4 1区 医学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yu-Ting Zhang, Xiao-Ming Yang, Quan-Shan Jin, Jia-Yi Chen, Nan-Bin Zhu, Yi Ju, Zi-Yan Lin, Yang Zhi, Yi-Nuo Dong, Chun-Min Li, Yi-Min Mao, Xiu-Ling Zhi, Ming-Yang Ma, Ya-Li Xu, Xiao-Bo Li
{"title":"甜菜碱-同型半胱氨酸甲基转移酶通过bach1 - scd1 -油酸轴保护对乙酰氨基酚诱导的急性肝衰竭。","authors":"Yu-Ting Zhang, Xiao-Ming Yang, Quan-Shan Jin, Jia-Yi Chen, Nan-Bin Zhu, Yi Ju, Zi-Yan Lin, Yang Zhi, Yi-Nuo Dong, Chun-Min Li, Yi-Min Mao, Xiu-Ling Zhi, Ming-Yang Ma, Ya-Li Xu, Xiao-Bo Li","doi":"10.1038/s41401-025-01622-7","DOIUrl":null,"url":null,"abstract":"<p><p>Acetaminophen (APAP)-induced liver injury (AILI) is a leading cause of acute liver failure, with limited preventive or therapeutic options. The role of betaine-homocysteine methyltransferase (BHMT), a key enzyme in the methionine cycle, remains unclear. We found that BHMT, primarily expressed in hepatocytes, showed reduced expression in the liver but elevated serum levels in the APAP-induced liver injury (AILI) mouse model. GalNAc-mediated targeted knockdown of Bhmt in hepatocytes aggravated AILI in mice. Through RNA-seq screening, we found that Bhmt deficiency dramatically suppressed stearoyl-coenzyme A desaturase 1 (SCD1) expression. Knockdown of Scd1 also exacerbated AILI. Mechanistically, Bhmt knockdown decreased the DNA methylation of BACH1 (BTB and CNC homology 1), a transcriptional factor, leading to upregulated BACH1 expression in primary mouse hepatocytes (PMHs) treated with APAP. BACH1 then bound to the enhancer region of Scd1, transcriptionally repressing SCD1. Lipidomic analysis revealed that Bhmt or Scd1 deficiency reduced levels of intracellular unsaturated fatty acids, particularly oleic acid (OA), whereas SCD1 overexpression increased OA levels and decreased lipid peroxides. OA administration alleviated AILI and mitigated the hepatotoxicity associated with Bhmt or Scd1 knockdown. Our findings indicate that BHMT mitigates AILI via the BACH1-SCD1-OA axis, suggesting that BHMT could serve as a preventive target for AILI, while increasing OA intake may offer dietary benefits for patients.</p>","PeriodicalId":6942,"journal":{"name":"Acta Pharmacologica Sinica","volume":" ","pages":""},"PeriodicalIF":8.4000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Betaine-homocysteine methyltransferase protects against acetaminophen-induced acute liver failure via BACH1-SCD1-oleic acid axis.\",\"authors\":\"Yu-Ting Zhang, Xiao-Ming Yang, Quan-Shan Jin, Jia-Yi Chen, Nan-Bin Zhu, Yi Ju, Zi-Yan Lin, Yang Zhi, Yi-Nuo Dong, Chun-Min Li, Yi-Min Mao, Xiu-Ling Zhi, Ming-Yang Ma, Ya-Li Xu, Xiao-Bo Li\",\"doi\":\"10.1038/s41401-025-01622-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Acetaminophen (APAP)-induced liver injury (AILI) is a leading cause of acute liver failure, with limited preventive or therapeutic options. The role of betaine-homocysteine methyltransferase (BHMT), a key enzyme in the methionine cycle, remains unclear. We found that BHMT, primarily expressed in hepatocytes, showed reduced expression in the liver but elevated serum levels in the APAP-induced liver injury (AILI) mouse model. GalNAc-mediated targeted knockdown of Bhmt in hepatocytes aggravated AILI in mice. Through RNA-seq screening, we found that Bhmt deficiency dramatically suppressed stearoyl-coenzyme A desaturase 1 (SCD1) expression. Knockdown of Scd1 also exacerbated AILI. Mechanistically, Bhmt knockdown decreased the DNA methylation of BACH1 (BTB and CNC homology 1), a transcriptional factor, leading to upregulated BACH1 expression in primary mouse hepatocytes (PMHs) treated with APAP. BACH1 then bound to the enhancer region of Scd1, transcriptionally repressing SCD1. Lipidomic analysis revealed that Bhmt or Scd1 deficiency reduced levels of intracellular unsaturated fatty acids, particularly oleic acid (OA), whereas SCD1 overexpression increased OA levels and decreased lipid peroxides. OA administration alleviated AILI and mitigated the hepatotoxicity associated with Bhmt or Scd1 knockdown. Our findings indicate that BHMT mitigates AILI via the BACH1-SCD1-OA axis, suggesting that BHMT could serve as a preventive target for AILI, while increasing OA intake may offer dietary benefits for patients.</p>\",\"PeriodicalId\":6942,\"journal\":{\"name\":\"Acta Pharmacologica Sinica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2025-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Pharmacologica Sinica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41401-025-01622-7\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Pharmacologica Sinica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41401-025-01622-7","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

对乙酰氨基酚(APAP)诱导的肝损伤(AILI)是急性肝衰竭的主要原因,预防或治疗方案有限。甜菜碱-同型半胱氨酸甲基转移酶(BHMT)是蛋氨酸循环中的关键酶,其作用尚不清楚。我们发现,主要在肝细胞中表达的BHMT在apap诱导的肝损伤(AILI)小鼠模型中肝脏表达减少,但血清水平升高。galnac介导的肝细胞中Bhmt的靶向下调加重了小鼠AILI。通过RNA-seq筛选,我们发现Bhmt缺乏显著抑制硬脂酰辅酶A去饱和酶1 (SCD1)的表达。Scd1的下调也加重了AILI。机制上,Bhmt敲低降低了转录因子BACH1 (BTB和CNC同源1)的DNA甲基化,导致APAP处理的小鼠原代肝细胞(PMHs)中BACH1表达上调。然后BACH1结合到Scd1的增强子区,在转录上抑制Scd1。脂质组学分析显示,Bhmt或Scd1缺乏会降低细胞内不饱和脂肪酸水平,尤其是油酸(OA),而Scd1过表达会增加OA水平,并降低脂质过氧化物。OA给药可减轻aii,减轻Bhmt或Scd1敲低相关的肝毒性。我们的研究结果表明,BHMT通过BACH1-SCD1-OA轴减轻AILI,这表明BHMT可以作为AILI的预防靶点,而增加OA摄入量可能为患者提供饮食益处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Betaine-homocysteine methyltransferase protects against acetaminophen-induced acute liver failure via BACH1-SCD1-oleic acid axis.

Acetaminophen (APAP)-induced liver injury (AILI) is a leading cause of acute liver failure, with limited preventive or therapeutic options. The role of betaine-homocysteine methyltransferase (BHMT), a key enzyme in the methionine cycle, remains unclear. We found that BHMT, primarily expressed in hepatocytes, showed reduced expression in the liver but elevated serum levels in the APAP-induced liver injury (AILI) mouse model. GalNAc-mediated targeted knockdown of Bhmt in hepatocytes aggravated AILI in mice. Through RNA-seq screening, we found that Bhmt deficiency dramatically suppressed stearoyl-coenzyme A desaturase 1 (SCD1) expression. Knockdown of Scd1 also exacerbated AILI. Mechanistically, Bhmt knockdown decreased the DNA methylation of BACH1 (BTB and CNC homology 1), a transcriptional factor, leading to upregulated BACH1 expression in primary mouse hepatocytes (PMHs) treated with APAP. BACH1 then bound to the enhancer region of Scd1, transcriptionally repressing SCD1. Lipidomic analysis revealed that Bhmt or Scd1 deficiency reduced levels of intracellular unsaturated fatty acids, particularly oleic acid (OA), whereas SCD1 overexpression increased OA levels and decreased lipid peroxides. OA administration alleviated AILI and mitigated the hepatotoxicity associated with Bhmt or Scd1 knockdown. Our findings indicate that BHMT mitigates AILI via the BACH1-SCD1-OA axis, suggesting that BHMT could serve as a preventive target for AILI, while increasing OA intake may offer dietary benefits for patients.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Pharmacologica Sinica
Acta Pharmacologica Sinica 医学-化学综合
CiteScore
15.10
自引率
2.40%
发文量
4365
审稿时长
2 months
期刊介绍: APS (Acta Pharmacologica Sinica) welcomes submissions from diverse areas of pharmacology and the life sciences. While we encourage contributions across a broad spectrum, topics of particular interest include, but are not limited to: anticancer pharmacology, cardiovascular and pulmonary pharmacology, clinical pharmacology, drug discovery, gastrointestinal and hepatic pharmacology, genitourinary, renal, and endocrine pharmacology, immunopharmacology and inflammation, molecular and cellular pharmacology, neuropharmacology, pharmaceutics, and pharmacokinetics. Join us in sharing your research and insights in pharmacology and the life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信