同源四倍体黄色火龙果的染色体水平基因组组装为不同倍性火龙果物种的性状模式进化提供了新的见解

IF 10.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Qamar U. Zaman, Ali Raza, Liu Hui, Mian Faisal Nazir, Vanika Garg, Muhammad Ikram, Guoqing Wang, Wei Lv, Darya Khan, Aamir Ali Khokhar, Zhang You, Annapurna Chitikineni, Babar Usman, Cui Jianpeng, Xulong Yang, Shiyou Zuo, Peifeng Liu, Sunjeet Kumar, Mengqi Guo, Zhi-Xin Zhu, Girish Dwivedi, Yong-Hua Qin, Rajeev K. Varshney, Hua-Feng Wang
{"title":"同源四倍体黄色火龙果的染色体水平基因组组装为不同倍性火龙果物种的性状模式进化提供了新的见解","authors":"Qamar U. Zaman, Ali Raza, Liu Hui, Mian Faisal Nazir, Vanika Garg, Muhammad Ikram, Guoqing Wang, Wei Lv, Darya Khan, Aamir Ali Khokhar, Zhang You, Annapurna Chitikineni, Babar Usman, Cui Jianpeng, Xulong Yang, Shiyou Zuo, Peifeng Liu, Sunjeet Kumar, Mengqi Guo, Zhi-Xin Zhu, Girish Dwivedi, Yong-Hua Qin, Rajeev K. Varshney, Hua-Feng Wang","doi":"10.1186/s13059-025-03695-3","DOIUrl":null,"url":null,"abstract":"Yellow pitaya (Selenicereus megalanthus, 2n = 4x = 44) breeding remains severely hindered due to the lack of a reference genome. Here, we present a high-quality chromosome-level genome assembly of yellow pitaya using PacBio HiFi sequencing and Hi-C scaffolding technologies. We identify yellow pitaya as an autotetraploid with a genome size of 1.79 Gb, harboring 27,246 high-confidence genes probably from diploid ancestors, red pitaya (S. undatus). By comparative analysis of the 3D chromatin architecture, we identify varying number of compartment A/B, topologically associated domains (TADs), and structural variations in diploid (red pitaya) and polyploid (yellow pitaya) species. We find that TAD boundaries are enriched with transcription factor motifs in both species. We find significant alterations in expression of genes in the betalain biosynthesis pathway in both species. We detect differential expression of genes encoding key regulators of pericarp color within the TAD regions of polyploid pitaya and diploid pitaya. We also identify the expression differences in candidate genes that likely influence betacyanin and betaxanthin synthesis in both species. Our findings suggest that differential 3D genome organization, especially differences in TAD boundaries, may impact gene expression, which may further lead to different trait formation in different pitaya species. This provides theoretical implications for fast-forward breeding.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"16 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chromosome-level genome assembly of the autotetraploid yellow pitaya provides novel insights into evolution of trait patterning in pitaya species with different ploidy\",\"authors\":\"Qamar U. Zaman, Ali Raza, Liu Hui, Mian Faisal Nazir, Vanika Garg, Muhammad Ikram, Guoqing Wang, Wei Lv, Darya Khan, Aamir Ali Khokhar, Zhang You, Annapurna Chitikineni, Babar Usman, Cui Jianpeng, Xulong Yang, Shiyou Zuo, Peifeng Liu, Sunjeet Kumar, Mengqi Guo, Zhi-Xin Zhu, Girish Dwivedi, Yong-Hua Qin, Rajeev K. Varshney, Hua-Feng Wang\",\"doi\":\"10.1186/s13059-025-03695-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Yellow pitaya (Selenicereus megalanthus, 2n = 4x = 44) breeding remains severely hindered due to the lack of a reference genome. Here, we present a high-quality chromosome-level genome assembly of yellow pitaya using PacBio HiFi sequencing and Hi-C scaffolding technologies. We identify yellow pitaya as an autotetraploid with a genome size of 1.79 Gb, harboring 27,246 high-confidence genes probably from diploid ancestors, red pitaya (S. undatus). By comparative analysis of the 3D chromatin architecture, we identify varying number of compartment A/B, topologically associated domains (TADs), and structural variations in diploid (red pitaya) and polyploid (yellow pitaya) species. We find that TAD boundaries are enriched with transcription factor motifs in both species. We find significant alterations in expression of genes in the betalain biosynthesis pathway in both species. We detect differential expression of genes encoding key regulators of pericarp color within the TAD regions of polyploid pitaya and diploid pitaya. We also identify the expression differences in candidate genes that likely influence betacyanin and betaxanthin synthesis in both species. Our findings suggest that differential 3D genome organization, especially differences in TAD boundaries, may impact gene expression, which may further lead to different trait formation in different pitaya species. This provides theoretical implications for fast-forward breeding.\",\"PeriodicalId\":12611,\"journal\":{\"name\":\"Genome Biology\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2025-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13059-025-03695-3\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-025-03695-3","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

由于缺乏参考基因组,黄火龙果(Selenicereus megalanthus, 2n = 4x = 44)的育种仍然严重受阻。在这里,我们使用PacBio HiFi测序和Hi-C支架技术提出了高质量的黄色火龙果染色体水平基因组组装。黄火龙果为同源四倍体,基因组大小为1.79 Gb,含有27246个高置信度基因,可能来自二倍体祖先红火龙果(S. undatus)。通过对三维染色质结构的比较分析,我们确定了二倍体(红色火龙果)和多倍体(黄色火龙果)物种中不同数量的室A/B、拓扑相关结构域(tad)和结构变异。我们发现两个物种的TAD边界都富含转录因子基序。我们发现在这两个物种中甜菜素生物合成途径中基因的表达有显著的变化。我们检测了多倍体火龙果和二倍体火龙果TAD区域中果皮颜色关键调控基因的差异表达。我们还确定了候选基因的表达差异,这些基因可能影响两种物种中甜菜青素和甜菜黄素的合成。我们的研究结果表明,三维基因组组织的差异,特别是TAD边界的差异,可能会影响基因表达,从而导致不同火龙果物种的不同性状形成。这为快进育种提供了理论启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chromosome-level genome assembly of the autotetraploid yellow pitaya provides novel insights into evolution of trait patterning in pitaya species with different ploidy
Yellow pitaya (Selenicereus megalanthus, 2n = 4x = 44) breeding remains severely hindered due to the lack of a reference genome. Here, we present a high-quality chromosome-level genome assembly of yellow pitaya using PacBio HiFi sequencing and Hi-C scaffolding technologies. We identify yellow pitaya as an autotetraploid with a genome size of 1.79 Gb, harboring 27,246 high-confidence genes probably from diploid ancestors, red pitaya (S. undatus). By comparative analysis of the 3D chromatin architecture, we identify varying number of compartment A/B, topologically associated domains (TADs), and structural variations in diploid (red pitaya) and polyploid (yellow pitaya) species. We find that TAD boundaries are enriched with transcription factor motifs in both species. We find significant alterations in expression of genes in the betalain biosynthesis pathway in both species. We detect differential expression of genes encoding key regulators of pericarp color within the TAD regions of polyploid pitaya and diploid pitaya. We also identify the expression differences in candidate genes that likely influence betacyanin and betaxanthin synthesis in both species. Our findings suggest that differential 3D genome organization, especially differences in TAD boundaries, may impact gene expression, which may further lead to different trait formation in different pitaya species. This provides theoretical implications for fast-forward breeding.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genome Biology
Genome Biology Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍: Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens. With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category. Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信