ScaleSC:一个超高速和可扩展的单细胞RNA-seq数据分析管道,由GPU驱动。

IF 2.8 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Bioinformatics advances Pub Date : 2025-07-17 eCollection Date: 2025-01-01 DOI:10.1093/bioadv/vbaf167
Wenxing Hu, Haotian Zhang, Yu H Sun, Shaolong Cao, Jake Gagnon, Yuka Moroishi, Yirui Chen, Zhengyu Ouyang, Baohong Zhang
{"title":"ScaleSC:一个超高速和可扩展的单细胞RNA-seq数据分析管道,由GPU驱动。","authors":"Wenxing Hu, Haotian Zhang, Yu H Sun, Shaolong Cao, Jake Gagnon, Yuka Moroishi, Yirui Chen, Zhengyu Ouyang, Baohong Zhang","doi":"10.1093/bioadv/vbaf167","DOIUrl":null,"url":null,"abstract":"<p><strong>Summary: </strong>The rise of large-scale single-cell RNA-seq data has introduced challenges in data processing due to its slow speed. Leveraging advancements in Graphics Processing Unit (GPU) computing ecosystems, such as <i>CuPy</i> and Compute Unified Device Architecture (CUDA), building on <i>Scanpy</i> and <i>Rapids-singlecell</i> package, we developed <i>ScaleSC</i>, a GPU-accelerated solution for large-scale single-cell data processing. <i>ScaleSC</i> delivers over a 20× speedup through GPU computing and significantly improves scalability, handling datasets of 10-20 million cells with over 1000 batches by overcoming the memory bottleneck on a single A100 card, which far surpasses <i>Rapids-singlecell'</i>s capacity of processing only 1 million cells without multi-GPU support. We also resolved discrepancies between GPU and Central Processing Unit (CPU) algorithm implementations to ensure consistency. In addition to core optimizations, we developed novel tools for marker gene identification and cluster merging with GPU-optimized implementations seamlessly integrated. <i>ScaleSC</i> shares a similar syntax with <i>Scanpy</i>, which helps lower the learning curve for users already familiar with <i>Scanpy</i> workflows.</p><p><strong>Availability and implementation: </strong>The <i>ScaleSC</i> package (https://github.com/interactivereport/ScaleSC) promises significant benefits for the single-cell RNA-seq computational community.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"5 1","pages":"vbaf167"},"PeriodicalIF":2.8000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12321287/pdf/","citationCount":"0","resultStr":"{\"title\":\"<i>ScaleSC</i>: a superfast and scalable single-cell RNA-seq data analysis pipeline powered by GPU.\",\"authors\":\"Wenxing Hu, Haotian Zhang, Yu H Sun, Shaolong Cao, Jake Gagnon, Yuka Moroishi, Yirui Chen, Zhengyu Ouyang, Baohong Zhang\",\"doi\":\"10.1093/bioadv/vbaf167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Summary: </strong>The rise of large-scale single-cell RNA-seq data has introduced challenges in data processing due to its slow speed. Leveraging advancements in Graphics Processing Unit (GPU) computing ecosystems, such as <i>CuPy</i> and Compute Unified Device Architecture (CUDA), building on <i>Scanpy</i> and <i>Rapids-singlecell</i> package, we developed <i>ScaleSC</i>, a GPU-accelerated solution for large-scale single-cell data processing. <i>ScaleSC</i> delivers over a 20× speedup through GPU computing and significantly improves scalability, handling datasets of 10-20 million cells with over 1000 batches by overcoming the memory bottleneck on a single A100 card, which far surpasses <i>Rapids-singlecell'</i>s capacity of processing only 1 million cells without multi-GPU support. We also resolved discrepancies between GPU and Central Processing Unit (CPU) algorithm implementations to ensure consistency. In addition to core optimizations, we developed novel tools for marker gene identification and cluster merging with GPU-optimized implementations seamlessly integrated. <i>ScaleSC</i> shares a similar syntax with <i>Scanpy</i>, which helps lower the learning curve for users already familiar with <i>Scanpy</i> workflows.</p><p><strong>Availability and implementation: </strong>The <i>ScaleSC</i> package (https://github.com/interactivereport/ScaleSC) promises significant benefits for the single-cell RNA-seq computational community.</p>\",\"PeriodicalId\":72368,\"journal\":{\"name\":\"Bioinformatics advances\",\"volume\":\"5 1\",\"pages\":\"vbaf167\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12321287/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/bioadv/vbaf167\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbaf167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

摘要:大规模单细胞RNA-seq数据的兴起,由于其速度慢,给数据处理带来了挑战。利用图形处理单元(GPU)计算生态系统的进步,如CuPy和计算统一设备架构(CUDA),基于Scanpy和rapids -单细胞软件包,我们开发了ScaleSC,这是一种用于大规模单细胞数据处理的GPU加速解决方案。ScaleSC通过GPU计算提供了超过20倍的加速,并显著提高了可扩展性,通过克服单个A100卡的内存瓶颈,处理1000多批次的1000 - 2000万单元的数据集,远远超过了Rapids-singlecell在没有多GPU支持的情况下仅处理100万单元的能力。我们还解决了GPU和中央处理器(CPU)算法实现之间的差异,以确保一致性。除了核心优化之外,我们还开发了用于标记基因识别和集群合并的新工具,与gpu优化实现无缝集成。ScaleSC与Scanpy共享类似的语法,这有助于降低已经熟悉Scanpy工作流的用户的学习曲线。可用性和实现:ScaleSC包(https://github.com/interactivereport/ScaleSC)承诺为单细胞RNA-seq计算社区带来重大好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

<i>ScaleSC</i>: a superfast and scalable single-cell RNA-seq data analysis pipeline powered by GPU.

<i>ScaleSC</i>: a superfast and scalable single-cell RNA-seq data analysis pipeline powered by GPU.

<i>ScaleSC</i>: a superfast and scalable single-cell RNA-seq data analysis pipeline powered by GPU.

ScaleSC: a superfast and scalable single-cell RNA-seq data analysis pipeline powered by GPU.

Summary: The rise of large-scale single-cell RNA-seq data has introduced challenges in data processing due to its slow speed. Leveraging advancements in Graphics Processing Unit (GPU) computing ecosystems, such as CuPy and Compute Unified Device Architecture (CUDA), building on Scanpy and Rapids-singlecell package, we developed ScaleSC, a GPU-accelerated solution for large-scale single-cell data processing. ScaleSC delivers over a 20× speedup through GPU computing and significantly improves scalability, handling datasets of 10-20 million cells with over 1000 batches by overcoming the memory bottleneck on a single A100 card, which far surpasses Rapids-singlecell's capacity of processing only 1 million cells without multi-GPU support. We also resolved discrepancies between GPU and Central Processing Unit (CPU) algorithm implementations to ensure consistency. In addition to core optimizations, we developed novel tools for marker gene identification and cluster merging with GPU-optimized implementations seamlessly integrated. ScaleSC shares a similar syntax with Scanpy, which helps lower the learning curve for users already familiar with Scanpy workflows.

Availability and implementation: The ScaleSC package (https://github.com/interactivereport/ScaleSC) promises significant benefits for the single-cell RNA-seq computational community.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信