基于Bergman最小模型的无创连续血糖监测方法。

IF 2.6 4区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Ang Li, Long Zhao, Chenyang Wu, Zhanxiao Geng, Lihui Yang, Fei Tang
{"title":"基于Bergman最小模型的无创连续血糖监测方法。","authors":"Ang Li, Long Zhao, Chenyang Wu, Zhanxiao Geng, Lihui Yang, Fei Tang","doi":"10.1007/s11517-025-03422-x","DOIUrl":null,"url":null,"abstract":"<p><p>Currently, non-invasive continuous blood glucose monitoring technology remains insufficient in terms of clinical validation data. Existing approaches predominantly depend on statistical models to predict blood glucose levels, which often suffer from limited data samples. This leads to significant individual differences in non-invasive continuous glucose monitoring, limiting its scope and promotion. We propose a neural network that uses metabolic characteristics as inputs to predict the rate of insulin-facilitated glucose uptake by cells and postprandial glucose gradient changes (glucose gradient: the rate of change of blood glucose concentration within a unit of time (dG/dt), with the unit of mg/(dL × min), reflects the dynamic change trend of blood glucose levels). This neural network utilises non-invasive continuous glucose monitoring method based on the Bergman minimal model (BM-NCGM) while considering the effects of the glucose gradient, insulin action, and the digestion process on glucose changes, achieving non-invasive continuous glucose monitoring. This work involved 161 subjects in a controlled clinical trial, collecting over 15,000 valid data sets. The predictive results of BM-NCGM for glucose showed that the CEG A area accounted for 77.58% and the A + B area for 99.57%. The correlation coefficient (0.85), RMSE (1.48 mmol/L), and MARD (11.51%) showed an improvement of over 32% compared to the non-use of BM-NCGM. The dynamic time warping algorithm was used to calculate the distance between the predicted blood glucose spectrum and the reference blood glucose spectrum, with an average distance of 21.80, demonstrating the excellent blood glucose spectrum tracking ability of BM-NCGM. This study is the first to apply the Bergman minimum model to non-invasive continuous blood glucose monitoring research, supported by a large amount of clinical trial data, bringing non-invasive continuous blood glucose monitoring closer to its true application in daily blood glucose monitoring.   CLINICAL TRIAL REGISTRY NUMBER: ChiCTR1900028100.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A non-invasive continuous glucose monitoring method based on the Bergman minimal model.\",\"authors\":\"Ang Li, Long Zhao, Chenyang Wu, Zhanxiao Geng, Lihui Yang, Fei Tang\",\"doi\":\"10.1007/s11517-025-03422-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Currently, non-invasive continuous blood glucose monitoring technology remains insufficient in terms of clinical validation data. Existing approaches predominantly depend on statistical models to predict blood glucose levels, which often suffer from limited data samples. This leads to significant individual differences in non-invasive continuous glucose monitoring, limiting its scope and promotion. We propose a neural network that uses metabolic characteristics as inputs to predict the rate of insulin-facilitated glucose uptake by cells and postprandial glucose gradient changes (glucose gradient: the rate of change of blood glucose concentration within a unit of time (dG/dt), with the unit of mg/(dL × min), reflects the dynamic change trend of blood glucose levels). This neural network utilises non-invasive continuous glucose monitoring method based on the Bergman minimal model (BM-NCGM) while considering the effects of the glucose gradient, insulin action, and the digestion process on glucose changes, achieving non-invasive continuous glucose monitoring. This work involved 161 subjects in a controlled clinical trial, collecting over 15,000 valid data sets. The predictive results of BM-NCGM for glucose showed that the CEG A area accounted for 77.58% and the A + B area for 99.57%. The correlation coefficient (0.85), RMSE (1.48 mmol/L), and MARD (11.51%) showed an improvement of over 32% compared to the non-use of BM-NCGM. The dynamic time warping algorithm was used to calculate the distance between the predicted blood glucose spectrum and the reference blood glucose spectrum, with an average distance of 21.80, demonstrating the excellent blood glucose spectrum tracking ability of BM-NCGM. This study is the first to apply the Bergman minimum model to non-invasive continuous blood glucose monitoring research, supported by a large amount of clinical trial data, bringing non-invasive continuous blood glucose monitoring closer to its true application in daily blood glucose monitoring.   CLINICAL TRIAL REGISTRY NUMBER: ChiCTR1900028100.</p>\",\"PeriodicalId\":49840,\"journal\":{\"name\":\"Medical & Biological Engineering & Computing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical & Biological Engineering & Computing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11517-025-03422-x\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-025-03422-x","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

目前,无创连续血糖监测技术在临床验证数据方面仍然不足。现有的方法主要依赖于统计模型来预测血糖水平,这往往受到数据样本有限的影响。这导致无创连续血糖监测存在显著的个体差异,限制了其范围和推广。我们提出了一个以代谢特征为输入的神经网络来预测胰岛素促进的细胞葡萄糖摄取速率和餐后葡萄糖梯度变化(葡萄糖梯度:单位时间内血糖浓度的变化率(dG/dt),单位为mg/(dL × min),反映血糖水平的动态变化趋势)。该神经网络采用基于Bergman最小模型(BM-NCGM)的无创连续血糖监测方法,同时考虑葡萄糖梯度、胰岛素作用和消化过程对血糖变化的影响,实现无创连续血糖监测。这项工作涉及161名对照临床试验对象,收集了超过15,000组有效数据集。BM-NCGM对葡萄糖的预测结果显示,CEG A区占77.58%,A + B区占99.57%。相关系数(0.85)、RMSE (1.48 mmol/L)和MARD(11.51%)与未使用BM-NCGM相比改善了32%以上。采用动态时间翘曲算法计算预测血糖谱与参考血糖谱之间的距离,平均距离为21.80,表明BM-NCGM具有良好的血糖谱跟踪能力。本研究首次将Bergman最小模型应用于无创连续血糖监测研究,并得到大量临床试验数据的支持,使无创连续血糖监测更接近其在日常血糖监测中的真正应用。临床试验注册号:ChiCTR1900028100。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A non-invasive continuous glucose monitoring method based on the Bergman minimal model.

Currently, non-invasive continuous blood glucose monitoring technology remains insufficient in terms of clinical validation data. Existing approaches predominantly depend on statistical models to predict blood glucose levels, which often suffer from limited data samples. This leads to significant individual differences in non-invasive continuous glucose monitoring, limiting its scope and promotion. We propose a neural network that uses metabolic characteristics as inputs to predict the rate of insulin-facilitated glucose uptake by cells and postprandial glucose gradient changes (glucose gradient: the rate of change of blood glucose concentration within a unit of time (dG/dt), with the unit of mg/(dL × min), reflects the dynamic change trend of blood glucose levels). This neural network utilises non-invasive continuous glucose monitoring method based on the Bergman minimal model (BM-NCGM) while considering the effects of the glucose gradient, insulin action, and the digestion process on glucose changes, achieving non-invasive continuous glucose monitoring. This work involved 161 subjects in a controlled clinical trial, collecting over 15,000 valid data sets. The predictive results of BM-NCGM for glucose showed that the CEG A area accounted for 77.58% and the A + B area for 99.57%. The correlation coefficient (0.85), RMSE (1.48 mmol/L), and MARD (11.51%) showed an improvement of over 32% compared to the non-use of BM-NCGM. The dynamic time warping algorithm was used to calculate the distance between the predicted blood glucose spectrum and the reference blood glucose spectrum, with an average distance of 21.80, demonstrating the excellent blood glucose spectrum tracking ability of BM-NCGM. This study is the first to apply the Bergman minimum model to non-invasive continuous blood glucose monitoring research, supported by a large amount of clinical trial data, bringing non-invasive continuous blood glucose monitoring closer to its true application in daily blood glucose monitoring.   CLINICAL TRIAL REGISTRY NUMBER: ChiCTR1900028100.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Medical & Biological Engineering & Computing
Medical & Biological Engineering & Computing 医学-工程:生物医学
CiteScore
6.00
自引率
3.10%
发文量
249
审稿时长
3.5 months
期刊介绍: Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging. MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field. MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信