Adrian Weich, Johannes Berges, Cindy Flamann, Katrin Bitterer, Krishna Pal Singh, David Chambers, Christopher Lischer, Xin Lai, Olaf Wolkenhauer, Carola Berking, Gerhard Krönke, Shailendra Gupta, Heiko Bruns, Julio Vera, Research Group Macrophages
{"title":"重用途克林霉素通过抑制caspase-1抑制肿瘤相关巨噬细胞的焦亡。","authors":"Adrian Weich, Johannes Berges, Cindy Flamann, Katrin Bitterer, Krishna Pal Singh, David Chambers, Christopher Lischer, Xin Lai, Olaf Wolkenhauer, Carola Berking, Gerhard Krönke, Shailendra Gupta, Heiko Bruns, Julio Vera, Research Group Macrophages","doi":"10.1186/s13046-025-03478-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The metastatic microenvironment is often rich in tumor-associated macrophages (TAMs). In uveal melanoma (UM), high levels of TAMs positively correlate with tumor progression and poorer prognosis. We hypothesize that the immunomodulation of TAMs can remodel the UM tumor microenvironment and make it more susceptible to therapeutic interventions.</p><p><strong>Methods: </strong>In our work, we designed a novel computational pipeline that combines single-cell transcriptomics data, network analysis, multicriteria decision techniques, and pharmacophore-based docking simulations to select molecular targets and matching repurposable drugs for TAM immunomodulation. The method generates a ranking of drug-target interactions, the most promising of which are channeled towards experimental validation.</p><p><strong>Results: </strong>To identify potential immunomodulatory targets, we created a network-based representation of the TAM interactome and extracted a regulatory core conditioned on UM expression data. Further, we selected 13 genes from this core (NLRP3, HMOX1, CASP1, GSTP1, NAMPT, HSP90AA1, B2M, ISG15, LTA4H, PTGS2, CXCL2, PLAUR, ZFP36, TANK) for pharmacophore-based virtual screening of FDA-approved compounds, followed by flexible molecular docking. Based on the ranked docking results, we chose the interaction between caspase-1 and clindamycin for experimental validation. Functional studies on macrophages confirmed that clindamycin inhibits caspase-1 activity and thereby inflammasome activation, leading to a decrease in IL-1β, IL-18, and gasdermin D cleavage products as well as a reduction in pyroptotic cell death. This clindamycin-mediated inhibition of caspase-1 was also observable in TAMs derived from the bone marrow of multiple myeloma patients.</p><p><strong>Conclusions: </strong>Our computational workflow for drug repurposing identified clindamycin as an efficacious inhibitor of caspase-1 that suppresses inflammasome activity and pyroptosis in vitro in TAMs.</p>","PeriodicalId":50199,"journal":{"name":"Journal of Experimental & Clinical Cancer Research","volume":"44 1","pages":"225"},"PeriodicalIF":12.8000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12320367/pdf/","citationCount":"0","resultStr":"{\"title\":\"Repurposed clindamycin suppresses pyroptosis in tumor-associated macrophages through Inhibition of caspase-1.\",\"authors\":\"Adrian Weich, Johannes Berges, Cindy Flamann, Katrin Bitterer, Krishna Pal Singh, David Chambers, Christopher Lischer, Xin Lai, Olaf Wolkenhauer, Carola Berking, Gerhard Krönke, Shailendra Gupta, Heiko Bruns, Julio Vera, Research Group Macrophages\",\"doi\":\"10.1186/s13046-025-03478-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The metastatic microenvironment is often rich in tumor-associated macrophages (TAMs). In uveal melanoma (UM), high levels of TAMs positively correlate with tumor progression and poorer prognosis. We hypothesize that the immunomodulation of TAMs can remodel the UM tumor microenvironment and make it more susceptible to therapeutic interventions.</p><p><strong>Methods: </strong>In our work, we designed a novel computational pipeline that combines single-cell transcriptomics data, network analysis, multicriteria decision techniques, and pharmacophore-based docking simulations to select molecular targets and matching repurposable drugs for TAM immunomodulation. The method generates a ranking of drug-target interactions, the most promising of which are channeled towards experimental validation.</p><p><strong>Results: </strong>To identify potential immunomodulatory targets, we created a network-based representation of the TAM interactome and extracted a regulatory core conditioned on UM expression data. Further, we selected 13 genes from this core (NLRP3, HMOX1, CASP1, GSTP1, NAMPT, HSP90AA1, B2M, ISG15, LTA4H, PTGS2, CXCL2, PLAUR, ZFP36, TANK) for pharmacophore-based virtual screening of FDA-approved compounds, followed by flexible molecular docking. Based on the ranked docking results, we chose the interaction between caspase-1 and clindamycin for experimental validation. Functional studies on macrophages confirmed that clindamycin inhibits caspase-1 activity and thereby inflammasome activation, leading to a decrease in IL-1β, IL-18, and gasdermin D cleavage products as well as a reduction in pyroptotic cell death. This clindamycin-mediated inhibition of caspase-1 was also observable in TAMs derived from the bone marrow of multiple myeloma patients.</p><p><strong>Conclusions: </strong>Our computational workflow for drug repurposing identified clindamycin as an efficacious inhibitor of caspase-1 that suppresses inflammasome activity and pyroptosis in vitro in TAMs.</p>\",\"PeriodicalId\":50199,\"journal\":{\"name\":\"Journal of Experimental & Clinical Cancer Research\",\"volume\":\"44 1\",\"pages\":\"225\"},\"PeriodicalIF\":12.8000,\"publicationDate\":\"2025-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12320367/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental & Clinical Cancer Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13046-025-03478-5\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental & Clinical Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13046-025-03478-5","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
Repurposed clindamycin suppresses pyroptosis in tumor-associated macrophages through Inhibition of caspase-1.
Background: The metastatic microenvironment is often rich in tumor-associated macrophages (TAMs). In uveal melanoma (UM), high levels of TAMs positively correlate with tumor progression and poorer prognosis. We hypothesize that the immunomodulation of TAMs can remodel the UM tumor microenvironment and make it more susceptible to therapeutic interventions.
Methods: In our work, we designed a novel computational pipeline that combines single-cell transcriptomics data, network analysis, multicriteria decision techniques, and pharmacophore-based docking simulations to select molecular targets and matching repurposable drugs for TAM immunomodulation. The method generates a ranking of drug-target interactions, the most promising of which are channeled towards experimental validation.
Results: To identify potential immunomodulatory targets, we created a network-based representation of the TAM interactome and extracted a regulatory core conditioned on UM expression data. Further, we selected 13 genes from this core (NLRP3, HMOX1, CASP1, GSTP1, NAMPT, HSP90AA1, B2M, ISG15, LTA4H, PTGS2, CXCL2, PLAUR, ZFP36, TANK) for pharmacophore-based virtual screening of FDA-approved compounds, followed by flexible molecular docking. Based on the ranked docking results, we chose the interaction between caspase-1 and clindamycin for experimental validation. Functional studies on macrophages confirmed that clindamycin inhibits caspase-1 activity and thereby inflammasome activation, leading to a decrease in IL-1β, IL-18, and gasdermin D cleavage products as well as a reduction in pyroptotic cell death. This clindamycin-mediated inhibition of caspase-1 was also observable in TAMs derived from the bone marrow of multiple myeloma patients.
Conclusions: Our computational workflow for drug repurposing identified clindamycin as an efficacious inhibitor of caspase-1 that suppresses inflammasome activity and pyroptosis in vitro in TAMs.
期刊介绍:
The Journal of Experimental & Clinical Cancer Research is an esteemed peer-reviewed publication that focuses on cancer research, encompassing everything from fundamental discoveries to practical applications.
We welcome submissions that showcase groundbreaking advancements in the field of cancer research, especially those that bridge the gap between laboratory findings and clinical implementation. Our goal is to foster a deeper understanding of cancer, improve prevention and detection strategies, facilitate accurate diagnosis, and enhance treatment options.
We are particularly interested in manuscripts that shed light on the mechanisms behind the development and progression of cancer, including metastasis. Additionally, we encourage submissions that explore molecular alterations or biomarkers that can help predict the efficacy of different treatments or identify drug resistance. Translational research related to targeted therapies, personalized medicine, tumor immunotherapy, and innovative approaches applicable to clinical investigations are also of great interest to us.
We provide a platform for the dissemination of large-scale molecular characterizations of human tumors and encourage researchers to share their insights, discoveries, and methodologies with the wider scientific community.
By publishing high-quality research articles, reviews, and commentaries, the Journal of Experimental & Clinical Cancer Research strives to contribute to the continuous improvement of cancer care and make a meaningful impact on patients' lives.