利用ai优化的3D cnn增强卵巢癌的PET/CT扫描分析。

IF 2 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Mohammad Hossein Sadeghi, Sedigheh Sina, Reza Faghihi, Mehrosadat Alavi, Francesco Giammarile, Hamid Omidi
{"title":"利用ai优化的3D cnn增强卵巢癌的PET/CT扫描分析。","authors":"Mohammad Hossein Sadeghi, Sedigheh Sina, Reza Faghihi, Mehrosadat Alavi, Francesco Giammarile, Hamid Omidi","doi":"10.1007/s13246-025-01615-0","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates how deep learning (DL) can enhance ovarian cancer diagnosis and staging using large imaging datasets. Specifically, we compare six conventional convolutional neural network (CNN) architectures-ResNet, DenseNet, GoogLeNet, U-Net, VGG, and AlexNet-with OCDA-Net, an enhanced model designed for [<sup>18</sup>F]FDG PET image analysis. The OCDA-Net, an advancement on the ResNet architecture, was thoroughly compared using randomly split datasets of training (80%), validation (10%), and test (10%) images. Trained over 100 epochs, OCDA-Net achieved superior diagnostic classification with an accuracy of 92%, and staging results of 94%, supported by robust precision, recall, and F-measure metrics. Grad-CAM ++ heat-maps confirmed that the network attends to hyper-metabolic lesions, supporting clinical interpretability. Our findings show that OCDA-Net outperforms existing CNN models and has strong potential to transform ovarian cancer diagnosis and staging. The study suggests that implementing these DL models in clinical practice could ultimately improve patient prognoses. Future research should expand datasets, enhance model interpretability, and validate these models in clinical settings.</p>","PeriodicalId":48490,"journal":{"name":"Physical and Engineering Sciences in Medicine","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced detection of ovarian cancer using AI-optimized 3D CNNs for PET/CT scan analysis.\",\"authors\":\"Mohammad Hossein Sadeghi, Sedigheh Sina, Reza Faghihi, Mehrosadat Alavi, Francesco Giammarile, Hamid Omidi\",\"doi\":\"10.1007/s13246-025-01615-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study investigates how deep learning (DL) can enhance ovarian cancer diagnosis and staging using large imaging datasets. Specifically, we compare six conventional convolutional neural network (CNN) architectures-ResNet, DenseNet, GoogLeNet, U-Net, VGG, and AlexNet-with OCDA-Net, an enhanced model designed for [<sup>18</sup>F]FDG PET image analysis. The OCDA-Net, an advancement on the ResNet architecture, was thoroughly compared using randomly split datasets of training (80%), validation (10%), and test (10%) images. Trained over 100 epochs, OCDA-Net achieved superior diagnostic classification with an accuracy of 92%, and staging results of 94%, supported by robust precision, recall, and F-measure metrics. Grad-CAM ++ heat-maps confirmed that the network attends to hyper-metabolic lesions, supporting clinical interpretability. Our findings show that OCDA-Net outperforms existing CNN models and has strong potential to transform ovarian cancer diagnosis and staging. The study suggests that implementing these DL models in clinical practice could ultimately improve patient prognoses. Future research should expand datasets, enhance model interpretability, and validate these models in clinical settings.</p>\",\"PeriodicalId\":48490,\"journal\":{\"name\":\"Physical and Engineering Sciences in Medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical and Engineering Sciences in Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13246-025-01615-0\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical and Engineering Sciences in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13246-025-01615-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了深度学习(DL)如何利用大型成像数据集增强卵巢癌的诊断和分期。具体来说,我们将六种传统的卷积神经网络(CNN)架构——resnet、DenseNet、GoogLeNet、U-Net、VGG和alexnet与OCDA-Net进行了比较,OCDA-Net是一种为[18F]FDG PET图像分析设计的增强模型。OCDA-Net是ResNet架构的一个进步,使用随机分割的训练(80%)、验证(10%)和测试(10%)图像数据集进行了彻底的比较。OCDA-Net训练了超过100个epoch,在强大的精度、召回率和F-measure指标的支持下,OCDA-Net的诊断分类准确率达到92%,分期结果达到94%。Grad-CAM ++热图证实该网络关注高代谢病变,支持临床可解释性。我们的研究结果表明,OCDA-Net优于现有的CNN模型,具有很大的潜力来改变卵巢癌的诊断和分期。该研究表明,在临床实践中实施这些DL模型最终可以改善患者预后。未来的研究应该扩展数据集,增强模型的可解释性,并在临床环境中验证这些模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced detection of ovarian cancer using AI-optimized 3D CNNs for PET/CT scan analysis.

This study investigates how deep learning (DL) can enhance ovarian cancer diagnosis and staging using large imaging datasets. Specifically, we compare six conventional convolutional neural network (CNN) architectures-ResNet, DenseNet, GoogLeNet, U-Net, VGG, and AlexNet-with OCDA-Net, an enhanced model designed for [18F]FDG PET image analysis. The OCDA-Net, an advancement on the ResNet architecture, was thoroughly compared using randomly split datasets of training (80%), validation (10%), and test (10%) images. Trained over 100 epochs, OCDA-Net achieved superior diagnostic classification with an accuracy of 92%, and staging results of 94%, supported by robust precision, recall, and F-measure metrics. Grad-CAM ++ heat-maps confirmed that the network attends to hyper-metabolic lesions, supporting clinical interpretability. Our findings show that OCDA-Net outperforms existing CNN models and has strong potential to transform ovarian cancer diagnosis and staging. The study suggests that implementing these DL models in clinical practice could ultimately improve patient prognoses. Future research should expand datasets, enhance model interpretability, and validate these models in clinical settings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.40
自引率
4.50%
发文量
110
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信