基于数据挖掘技术的脑电信号计算眼状态分类模型:比较分析。

IF 2 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Subhash Mondal, Amitava Nag
{"title":"基于数据挖掘技术的脑电信号计算眼状态分类模型:比较分析。","authors":"Subhash Mondal, Amitava Nag","doi":"10.1007/s13246-025-01619-w","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial Intelligence has shown great promise in healthcare, particularly in non-invasive diagnostics using bio signals. This study focuses on classifying eye states (open or closed) using Electroencephalogram (EEG) signals captured via a 14-electrode neuroheadset, recorded through a Brain-Computer Interface (BCI). A publicly available dataset comprising 14,980 instances was used, where each sample represents EEG signals corresponding to eye activity. Fourteen classical machine learning (ML) models were evaluated using a tenfold cross-validation approach. The preprocessing pipeline involved removing outliers using the Z-score method, addressing class imbalance with SMOTETomek, and applying a bandpass filter to reduce signal noise. Significant EEG features were selected using a two-sample independent t-test (p < 0.05), ensuring only statistically relevant electrodes were retained. Additionally, the Common Spatial Pattern (CSP) method was used for feature extraction to enhance class separability by maximizing variance differences between eye states. Experimental results demonstrate that several classifiers achieved strong performance, with accuracy above 90%. The k-Nearest Neighbours classifier yielded the highest accuracy of 97.92% with CSP, and 97.75% without CSP. The application of CSP also enhanced the performance of Multi-Layer Perceptron and Support Vector Machine, reaching accuracies of 95.30% and 93.93%, respectively. The results affirm that integrating statistical validation, signal processing, and ML techniques can enable accurate and efficient EEG-based eye state classification, with practical implications for real-time BCI systems and offering a lightweight solution for real-time healthcare wearable applications healthcare applications.</p>","PeriodicalId":48490,"journal":{"name":"Physical and Engineering Sciences in Medicine","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A computational eye state classification model using EEG signal based on data mining techniques: comparative analysis.\",\"authors\":\"Subhash Mondal, Amitava Nag\",\"doi\":\"10.1007/s13246-025-01619-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Artificial Intelligence has shown great promise in healthcare, particularly in non-invasive diagnostics using bio signals. This study focuses on classifying eye states (open or closed) using Electroencephalogram (EEG) signals captured via a 14-electrode neuroheadset, recorded through a Brain-Computer Interface (BCI). A publicly available dataset comprising 14,980 instances was used, where each sample represents EEG signals corresponding to eye activity. Fourteen classical machine learning (ML) models were evaluated using a tenfold cross-validation approach. The preprocessing pipeline involved removing outliers using the Z-score method, addressing class imbalance with SMOTETomek, and applying a bandpass filter to reduce signal noise. Significant EEG features were selected using a two-sample independent t-test (p < 0.05), ensuring only statistically relevant electrodes were retained. Additionally, the Common Spatial Pattern (CSP) method was used for feature extraction to enhance class separability by maximizing variance differences between eye states. Experimental results demonstrate that several classifiers achieved strong performance, with accuracy above 90%. The k-Nearest Neighbours classifier yielded the highest accuracy of 97.92% with CSP, and 97.75% without CSP. The application of CSP also enhanced the performance of Multi-Layer Perceptron and Support Vector Machine, reaching accuracies of 95.30% and 93.93%, respectively. The results affirm that integrating statistical validation, signal processing, and ML techniques can enable accurate and efficient EEG-based eye state classification, with practical implications for real-time BCI systems and offering a lightweight solution for real-time healthcare wearable applications healthcare applications.</p>\",\"PeriodicalId\":48490,\"journal\":{\"name\":\"Physical and Engineering Sciences in Medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical and Engineering Sciences in Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13246-025-01619-w\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical and Engineering Sciences in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13246-025-01619-w","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

人工智能在医疗保健领域显示出巨大的前景,特别是在利用生物信号进行非侵入性诊断方面。本研究的重点是通过脑机接口(BCI)记录的14电极神经耳机捕获的脑电图(EEG)信号对眼睛状态(打开或关闭)进行分类。使用了包含14,980个实例的公开数据集,其中每个样本代表与眼活动相对应的脑电图信号。使用十倍交叉验证方法评估14个经典机器学习(ML)模型。预处理流程包括使用Z-score方法去除异常值,使用SMOTETomek解决类不平衡问题,并应用带通滤波器来降低信号噪声。采用两样本独立t检验(p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A computational eye state classification model using EEG signal based on data mining techniques: comparative analysis.

Artificial Intelligence has shown great promise in healthcare, particularly in non-invasive diagnostics using bio signals. This study focuses on classifying eye states (open or closed) using Electroencephalogram (EEG) signals captured via a 14-electrode neuroheadset, recorded through a Brain-Computer Interface (BCI). A publicly available dataset comprising 14,980 instances was used, where each sample represents EEG signals corresponding to eye activity. Fourteen classical machine learning (ML) models were evaluated using a tenfold cross-validation approach. The preprocessing pipeline involved removing outliers using the Z-score method, addressing class imbalance with SMOTETomek, and applying a bandpass filter to reduce signal noise. Significant EEG features were selected using a two-sample independent t-test (p < 0.05), ensuring only statistically relevant electrodes were retained. Additionally, the Common Spatial Pattern (CSP) method was used for feature extraction to enhance class separability by maximizing variance differences between eye states. Experimental results demonstrate that several classifiers achieved strong performance, with accuracy above 90%. The k-Nearest Neighbours classifier yielded the highest accuracy of 97.92% with CSP, and 97.75% without CSP. The application of CSP also enhanced the performance of Multi-Layer Perceptron and Support Vector Machine, reaching accuracies of 95.30% and 93.93%, respectively. The results affirm that integrating statistical validation, signal processing, and ML techniques can enable accurate and efficient EEG-based eye state classification, with practical implications for real-time BCI systems and offering a lightweight solution for real-time healthcare wearable applications healthcare applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.40
自引率
4.50%
发文量
110
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信