在时间波动环境中的表型异质性。

IF 1.6 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Alexander P Browning, Sara Hamis
{"title":"在时间波动环境中的表型异质性。","authors":"Alexander P Browning, Sara Hamis","doi":"10.1088/1478-3975/adf790","DOIUrl":null,"url":null,"abstract":"<p><p>Many biological systems regulate phenotypic heterogeneity as a fitness-maximising strategy in uncertain and dynamic environments. Analysis of such strategies is typically confined both to a discrete set of environmental conditions, and to a discrete (often binary) set of phenotypes specialised to each condition. In this work, we extend theory on both fronts to encapsulate a potentially continuous spectrum of phenotypes arising in response to environmental fluctuations that drive changes in the phenotype-dependent growth rate. We consider two broad classes of stochastic environment: those that are temporally uncorrelated (modelled by white-noise processes), and those that are correlated (modelled by Poisson and Ornstein-Uhlenbeck processes). For tractability, we restrict analysis to an exponential growth model, and consider biologically relevant simplifications that pertain to the timescale of phenotype switching relative to fluctuations in the environment. These assumptions yield a series of analytical and semi-analytical expressions that reveal environments in which phenotypic heterogeneity is evolutionarily advantageous.</p>","PeriodicalId":20207,"journal":{"name":"Physical biology","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phenotypic heterogeneity in temporally fluctuating environments.\",\"authors\":\"Alexander P Browning, Sara Hamis\",\"doi\":\"10.1088/1478-3975/adf790\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Many biological systems regulate phenotypic heterogeneity as a fitness-maximising strategy in uncertain and dynamic environments. Analysis of such strategies is typically confined both to a discrete set of environmental conditions, and to a discrete (often binary) set of phenotypes specialised to each condition. In this work, we extend theory on both fronts to encapsulate a potentially continuous spectrum of phenotypes arising in response to environmental fluctuations that drive changes in the phenotype-dependent growth rate. We consider two broad classes of stochastic environment: those that are temporally uncorrelated (modelled by white-noise processes), and those that are correlated (modelled by Poisson and Ornstein-Uhlenbeck processes). For tractability, we restrict analysis to an exponential growth model, and consider biologically relevant simplifications that pertain to the timescale of phenotype switching relative to fluctuations in the environment. These assumptions yield a series of analytical and semi-analytical expressions that reveal environments in which phenotypic heterogeneity is evolutionarily advantageous.</p>\",\"PeriodicalId\":20207,\"journal\":{\"name\":\"Physical biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1088/1478-3975/adf790\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1088/1478-3975/adf790","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

许多生物系统在不确定和动态环境中调节表型异质性作为适应度最大化策略。对这些策略的分析通常局限于一组离散的环境条件,以及一组离散的(通常是二元的)专门针对每种条件的表型。在这项工作中,我们扩展了这两个方面的理论,以封装响应驱动表型依赖性生长速率变化的环境波动而产生的潜在连续表型谱。我们考虑了两大类随机环境:那些暂时不相关的(由白噪声过程建模)和那些相关的(由泊松和奥恩斯坦-乌伦贝克过程建模)。对于可追溯性,我们将分析限制为指数增长模型,并考虑与环境波动相关的表型转换时间尺度相关的生物学相关简化。这些假设产生了一系列分析性和半分析性表达,揭示了表型异质性在进化上有利的环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Phenotypic heterogeneity in temporally fluctuating environments.

Many biological systems regulate phenotypic heterogeneity as a fitness-maximising strategy in uncertain and dynamic environments. Analysis of such strategies is typically confined both to a discrete set of environmental conditions, and to a discrete (often binary) set of phenotypes specialised to each condition. In this work, we extend theory on both fronts to encapsulate a potentially continuous spectrum of phenotypes arising in response to environmental fluctuations that drive changes in the phenotype-dependent growth rate. We consider two broad classes of stochastic environment: those that are temporally uncorrelated (modelled by white-noise processes), and those that are correlated (modelled by Poisson and Ornstein-Uhlenbeck processes). For tractability, we restrict analysis to an exponential growth model, and consider biologically relevant simplifications that pertain to the timescale of phenotype switching relative to fluctuations in the environment. These assumptions yield a series of analytical and semi-analytical expressions that reveal environments in which phenotypic heterogeneity is evolutionarily advantageous.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical biology
Physical biology 生物-生物物理
CiteScore
4.20
自引率
0.00%
发文量
50
审稿时长
3 months
期刊介绍: Physical Biology publishes articles in the broad interdisciplinary field bridging biology with the physical sciences and engineering. This journal focuses on research in which quantitative approaches – experimental, theoretical and modeling – lead to new insights into biological systems at all scales of space and time, and all levels of organizational complexity. Physical Biology accepts contributions from a wide range of biological sub-fields, including topics such as: molecular biophysics, including single molecule studies, protein-protein and protein-DNA interactions subcellular structures, organelle dynamics, membranes, protein assemblies, chromosome structure intracellular processes, e.g. cytoskeleton dynamics, cellular transport, cell division systems biology, e.g. signaling, gene regulation and metabolic networks cells and their microenvironment, e.g. cell mechanics and motility, chemotaxis, extracellular matrix, biofilms cell-material interactions, e.g. biointerfaces, electrical stimulation and sensing, endocytosis cell-cell interactions, cell aggregates, organoids, tissues and organs developmental dynamics, including pattern formation and morphogenesis physical and evolutionary aspects of disease, e.g. cancer progression, amyloid formation neuronal systems, including information processing by networks, memory and learning population dynamics, ecology, and evolution collective action and emergence of collective phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信