运动过程中AMPK/mTOR平衡:对衰老肌肉胰岛素抵抗的影响

IF 3.7 2区 生物学 Q3 CELL BIOLOGY
Xie Mingzheng, Weng You
{"title":"运动过程中AMPK/mTOR平衡:对衰老肌肉胰岛素抵抗的影响","authors":"Xie Mingzheng, Weng You","doi":"10.1007/s11010-025-05362-4","DOIUrl":null,"url":null,"abstract":"<p><p>Age-related reductions in skeletal muscle insulin responsiveness promote metabolic dysregulation and contribute to an elevated probability of type 2 diabetes onset. The malfunction of nutrient-responsive signaling routes, specifically AMP-activated protein kinase (AMPK) and mechanistic target of rapamycin (mTOR), constitutes a central component of this biological process. The integrated activity of these kinases in controlling energy dynamics, protein formation, and glucose processing is fundamental to ensure metabolic homeostasis in skeletal muscle tissue. Through its modulation of AMPK and mTOR pathways, exercise helps reinstate signaling equilibrium and supports better insulin efficacy in aging skeletal muscle. This review explores the molecular mechanisms by which different forms of exercise-endurance, resistance, and combined training-modulate the AMPK/mTOR axis in aging muscle. This analysis focuses on exercise-induced AMPK signaling as a catalyst for mitochondrial development, enhanced glucose processing, and intensified fatty acid breakdown, while also temporally coordinating mTOR activity to support muscle maintenance without exacerbating insulin resistance. By integrating insights from aging biology, exercise physiology, and molecular metabolism, this review highlights the therapeutic potential of targeting AMPK/mTOR signaling through physical activity to combat insulin resistance in the elderly.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AMPK/mTOR balance during exercise: implications for insulin resistance in aging muscle.\",\"authors\":\"Xie Mingzheng, Weng You\",\"doi\":\"10.1007/s11010-025-05362-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Age-related reductions in skeletal muscle insulin responsiveness promote metabolic dysregulation and contribute to an elevated probability of type 2 diabetes onset. The malfunction of nutrient-responsive signaling routes, specifically AMP-activated protein kinase (AMPK) and mechanistic target of rapamycin (mTOR), constitutes a central component of this biological process. The integrated activity of these kinases in controlling energy dynamics, protein formation, and glucose processing is fundamental to ensure metabolic homeostasis in skeletal muscle tissue. Through its modulation of AMPK and mTOR pathways, exercise helps reinstate signaling equilibrium and supports better insulin efficacy in aging skeletal muscle. This review explores the molecular mechanisms by which different forms of exercise-endurance, resistance, and combined training-modulate the AMPK/mTOR axis in aging muscle. This analysis focuses on exercise-induced AMPK signaling as a catalyst for mitochondrial development, enhanced glucose processing, and intensified fatty acid breakdown, while also temporally coordinating mTOR activity to support muscle maintenance without exacerbating insulin resistance. By integrating insights from aging biology, exercise physiology, and molecular metabolism, this review highlights the therapeutic potential of targeting AMPK/mTOR signaling through physical activity to combat insulin resistance in the elderly.</p>\",\"PeriodicalId\":18724,\"journal\":{\"name\":\"Molecular and Cellular Biochemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular and Cellular Biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11010-025-05362-4\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11010-025-05362-4","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

年龄相关的骨骼肌胰岛素反应性降低会促进代谢失调,并导致2型糖尿病发病的概率升高。营养反应信号通路的故障,特别是amp激活的蛋白激酶(AMPK)和雷帕霉素的机制靶点(mTOR),构成了这一生物过程的核心组成部分。这些激酶在控制能量动力学、蛋白质形成和葡萄糖加工中的综合活性是确保骨骼肌组织代谢稳态的基础。通过调节AMPK和mTOR通路,运动有助于恢复信号平衡,并支持老化骨骼肌更好的胰岛素功效。本文探讨了不同形式的运动——耐力、阻力和联合训练——在衰老肌肉中调节AMPK/mTOR轴的分子机制。本研究的重点是运动诱导的AMPK信号作为线粒体发育、增强葡萄糖加工和强化脂肪酸分解的催化剂,同时也暂时协调mTOR活性以支持肌肉维持而不加剧胰岛素抵抗。通过整合衰老生物学、运动生理学和分子代谢的见解,本综述强调了通过身体活动靶向AMPK/mTOR信号以对抗老年人胰岛素抵抗的治疗潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AMPK/mTOR balance during exercise: implications for insulin resistance in aging muscle.

Age-related reductions in skeletal muscle insulin responsiveness promote metabolic dysregulation and contribute to an elevated probability of type 2 diabetes onset. The malfunction of nutrient-responsive signaling routes, specifically AMP-activated protein kinase (AMPK) and mechanistic target of rapamycin (mTOR), constitutes a central component of this biological process. The integrated activity of these kinases in controlling energy dynamics, protein formation, and glucose processing is fundamental to ensure metabolic homeostasis in skeletal muscle tissue. Through its modulation of AMPK and mTOR pathways, exercise helps reinstate signaling equilibrium and supports better insulin efficacy in aging skeletal muscle. This review explores the molecular mechanisms by which different forms of exercise-endurance, resistance, and combined training-modulate the AMPK/mTOR axis in aging muscle. This analysis focuses on exercise-induced AMPK signaling as a catalyst for mitochondrial development, enhanced glucose processing, and intensified fatty acid breakdown, while also temporally coordinating mTOR activity to support muscle maintenance without exacerbating insulin resistance. By integrating insights from aging biology, exercise physiology, and molecular metabolism, this review highlights the therapeutic potential of targeting AMPK/mTOR signaling through physical activity to combat insulin resistance in the elderly.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular and Cellular Biochemistry
Molecular and Cellular Biochemistry 生物-细胞生物学
CiteScore
8.30
自引率
2.30%
发文量
293
审稿时长
1.7 months
期刊介绍: Molecular and Cellular Biochemistry: An International Journal for Chemical Biology in Health and Disease publishes original research papers and short communications in all areas of the biochemical sciences, emphasizing novel findings relevant to the biochemical basis of cellular function and disease processes, as well as the mechanics of action of hormones and chemical agents. Coverage includes membrane transport, receptor mechanism, immune response, secretory processes, and cytoskeletal function, as well as biochemical structure-function relationships in the cell. In addition to the reports of original research, the journal publishes state of the art reviews. Specific subjects covered by Molecular and Cellular Biochemistry include cellular metabolism, cellular pathophysiology, enzymology, ion transport, lipid biochemistry, membrane biochemistry, molecular biology, nuclear structure and function, and protein chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信