非线性随机分数系统在广义SEIR模型中的应用。

IF 3.2 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-08-01 DOI:10.1063/5.0279918
H Tamimi, R Saadati, M B Ghaemi
{"title":"非线性随机分数系统在广义SEIR模型中的应用。","authors":"H Tamimi, R Saadati, M B Ghaemi","doi":"10.1063/5.0279918","DOIUrl":null,"url":null,"abstract":"<p><p>In this article, we successfully generalize the SEIR (Susceptible, Exposed, Infected, and Recovered) model to account for random and intermittent instances of disease transmission. This model explains the increased probability of disease transmission during specific periods, particularly for seasonal illnesses. Furthermore, we investigate the conditions necessary to ensure at least one solution for this model by employing the measure of noncompactness. Following this, we introduce a new approach that examines convergence, after which we apply the proposed numerical method to study practical examples.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 8","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of nonlinear stochastic fractional systems in the generalized SEIR model.\",\"authors\":\"H Tamimi, R Saadati, M B Ghaemi\",\"doi\":\"10.1063/5.0279918\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this article, we successfully generalize the SEIR (Susceptible, Exposed, Infected, and Recovered) model to account for random and intermittent instances of disease transmission. This model explains the increased probability of disease transmission during specific periods, particularly for seasonal illnesses. Furthermore, we investigate the conditions necessary to ensure at least one solution for this model by employing the measure of noncompactness. Following this, we introduce a new approach that examines convergence, after which we apply the proposed numerical method to study practical examples.</p>\",\"PeriodicalId\":9974,\"journal\":{\"name\":\"Chaos\",\"volume\":\"35 8\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0279918\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0279918","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们成功地推广了SEIR(易感、暴露、感染和恢复)模型,以解释随机和间歇性的疾病传播实例。该模型解释了在特定时期,特别是季节性疾病传播的可能性增加。进一步,我们利用非紧性度量来研究保证该模型至少有一个解的必要条件。在此之后,我们引入了一种新的方法来检验收敛性,之后我们应用所提出的数值方法来研究实际的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of nonlinear stochastic fractional systems in the generalized SEIR model.

In this article, we successfully generalize the SEIR (Susceptible, Exposed, Infected, and Recovered) model to account for random and intermittent instances of disease transmission. This model explains the increased probability of disease transmission during specific periods, particularly for seasonal illnesses. Furthermore, we investigate the conditions necessary to ensure at least one solution for this model by employing the measure of noncompactness. Following this, we introduce a new approach that examines convergence, after which we apply the proposed numerical method to study practical examples.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信