Rui Fang, Xue Wang, Han Zhang, Xiaolin Xie, Huan Chen, Wenting Lu, Si Zhao, Tianming Zhao, Zihao Cai, Ming Zhang, Bing Xu, Yuzheng Zhuge, Feng Zhang
{"title":"α-生育酚通过促进Nrf2核易位抑制肝星状细胞活化改善肝纤维化。","authors":"Rui Fang, Xue Wang, Han Zhang, Xiaolin Xie, Huan Chen, Wenting Lu, Si Zhao, Tianming Zhao, Zihao Cai, Ming Zhang, Bing Xu, Yuzheng Zhuge, Feng Zhang","doi":"10.1177/15230864251364900","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Aims:</i></b> α-Tocopherol is a potent natural antioxidant with a variety of biological functions and is widely used in clinical practice. However, the effect and mechanism of α-tocopherol on liver fibrosis remain unknown. The core of liver fibrosis is the activation of hepatic stellate cell (HSC). Inhibiting HSC activation may be the underlying mechanism by which α-tocopherol alleviates liver fibrosis. <b><i>Results:</i></b> Our study revealed that α-tocopherol improved liver injury and fibrosis in both CCl<sub>4</sub> and bile duct ligation induced liver fibrosis model mice. α-Tocopherol inhibited HSC activation by promoting nuclear erythroid 2-related factor 2 (Nrf2) translocation into the nucleus. α-Tocopherol directly promoted Nrf2 nuclear translocation by reducing its degradation, additionally, α-tocopherol suppressed autophagy by inhibiting endoplasmic reticulum stress, resulting in increased SQSTM1 competition to bind KEAP1 and indirectly promoting Nrf2 translocation into the nucleus. The increased Nrf2 nuclear translocation upregulated the expression of antioxidant genes, thereby reducing ROS and subsequently inhibiting HSC activation. Moreover, the antifibrotic and hepatoprotective effects of α-tocopherol were verified by the addition of the Nrf2 activator-curcumin, the autophagy inhibitor-3-methyladenine and the endoplasmic reticulum stress inhibitor-sodium 4-phenylbutyrate. <b><i>Innovation and Conclusion:</i></b> Our study is the first to identify the mechanism by which α-tocopherol alleviates liver fibrosis. Broadly speaking, this study demonstrated that α-tocopherol promotes Nrf2 nuclear translocation by reducing Nrf2 degradation and inhibiting endoplasmic reticulum stress, which then inhibits HSC activation and ultimately ameliorates liver injury and fibrosis. Therefore, α-tocopherol may become a novel therapeutic strategy for liver fibrosis. <i>Antioxid. Redox Signal.</i> 00, 000-000.</p>","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"α-Tocopherol Ameliorates Liver Fibrosis by Inhibiting Hepatic Stellate Cell Activation by Promoting Nrf2 Nuclear Translocation.\",\"authors\":\"Rui Fang, Xue Wang, Han Zhang, Xiaolin Xie, Huan Chen, Wenting Lu, Si Zhao, Tianming Zhao, Zihao Cai, Ming Zhang, Bing Xu, Yuzheng Zhuge, Feng Zhang\",\"doi\":\"10.1177/15230864251364900\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b><i>Aims:</i></b> α-Tocopherol is a potent natural antioxidant with a variety of biological functions and is widely used in clinical practice. However, the effect and mechanism of α-tocopherol on liver fibrosis remain unknown. The core of liver fibrosis is the activation of hepatic stellate cell (HSC). Inhibiting HSC activation may be the underlying mechanism by which α-tocopherol alleviates liver fibrosis. <b><i>Results:</i></b> Our study revealed that α-tocopherol improved liver injury and fibrosis in both CCl<sub>4</sub> and bile duct ligation induced liver fibrosis model mice. α-Tocopherol inhibited HSC activation by promoting nuclear erythroid 2-related factor 2 (Nrf2) translocation into the nucleus. α-Tocopherol directly promoted Nrf2 nuclear translocation by reducing its degradation, additionally, α-tocopherol suppressed autophagy by inhibiting endoplasmic reticulum stress, resulting in increased SQSTM1 competition to bind KEAP1 and indirectly promoting Nrf2 translocation into the nucleus. The increased Nrf2 nuclear translocation upregulated the expression of antioxidant genes, thereby reducing ROS and subsequently inhibiting HSC activation. Moreover, the antifibrotic and hepatoprotective effects of α-tocopherol were verified by the addition of the Nrf2 activator-curcumin, the autophagy inhibitor-3-methyladenine and the endoplasmic reticulum stress inhibitor-sodium 4-phenylbutyrate. <b><i>Innovation and Conclusion:</i></b> Our study is the first to identify the mechanism by which α-tocopherol alleviates liver fibrosis. Broadly speaking, this study demonstrated that α-tocopherol promotes Nrf2 nuclear translocation by reducing Nrf2 degradation and inhibiting endoplasmic reticulum stress, which then inhibits HSC activation and ultimately ameliorates liver injury and fibrosis. Therefore, α-tocopherol may become a novel therapeutic strategy for liver fibrosis. <i>Antioxid. Redox Signal.</i> 00, 000-000.</p>\",\"PeriodicalId\":8011,\"journal\":{\"name\":\"Antioxidants & redox signaling\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Antioxidants & redox signaling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1177/15230864251364900\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants & redox signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1177/15230864251364900","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
α-Tocopherol Ameliorates Liver Fibrosis by Inhibiting Hepatic Stellate Cell Activation by Promoting Nrf2 Nuclear Translocation.
Aims: α-Tocopherol is a potent natural antioxidant with a variety of biological functions and is widely used in clinical practice. However, the effect and mechanism of α-tocopherol on liver fibrosis remain unknown. The core of liver fibrosis is the activation of hepatic stellate cell (HSC). Inhibiting HSC activation may be the underlying mechanism by which α-tocopherol alleviates liver fibrosis. Results: Our study revealed that α-tocopherol improved liver injury and fibrosis in both CCl4 and bile duct ligation induced liver fibrosis model mice. α-Tocopherol inhibited HSC activation by promoting nuclear erythroid 2-related factor 2 (Nrf2) translocation into the nucleus. α-Tocopherol directly promoted Nrf2 nuclear translocation by reducing its degradation, additionally, α-tocopherol suppressed autophagy by inhibiting endoplasmic reticulum stress, resulting in increased SQSTM1 competition to bind KEAP1 and indirectly promoting Nrf2 translocation into the nucleus. The increased Nrf2 nuclear translocation upregulated the expression of antioxidant genes, thereby reducing ROS and subsequently inhibiting HSC activation. Moreover, the antifibrotic and hepatoprotective effects of α-tocopherol were verified by the addition of the Nrf2 activator-curcumin, the autophagy inhibitor-3-methyladenine and the endoplasmic reticulum stress inhibitor-sodium 4-phenylbutyrate. Innovation and Conclusion: Our study is the first to identify the mechanism by which α-tocopherol alleviates liver fibrosis. Broadly speaking, this study demonstrated that α-tocopherol promotes Nrf2 nuclear translocation by reducing Nrf2 degradation and inhibiting endoplasmic reticulum stress, which then inhibits HSC activation and ultimately ameliorates liver injury and fibrosis. Therefore, α-tocopherol may become a novel therapeutic strategy for liver fibrosis. Antioxid. Redox Signal. 00, 000-000.
期刊介绍:
Antioxidants & Redox Signaling (ARS) is the leading peer-reviewed journal dedicated to understanding the vital impact of oxygen and oxidation-reduction (redox) processes on human health and disease. The Journal explores key issues in genetic, pharmaceutical, and nutritional redox-based therapeutics. Cutting-edge research focuses on structural biology, stem cells, regenerative medicine, epigenetics, imaging, clinical outcomes, and preventive and therapeutic nutrition, among other areas.
ARS has expanded to create two unique foci within one journal: ARS Discoveries and ARS Therapeutics. ARS Discoveries (24 issues) publishes the highest-caliber breakthroughs in basic and applied research. ARS Therapeutics (12 issues) is the first publication of its kind that will help enhance the entire field of redox biology by showcasing the potential of redox sciences to change health outcomes.
ARS coverage includes:
-ROS/RNS as messengers
-Gaseous signal transducers
-Hypoxia and tissue oxygenation
-microRNA
-Prokaryotic systems
-Lessons from plant biology