Laura Di Marino;Luigi Di Palma;Michele Riccio;Francesco Fienga;Marco Arzeo;Oleg Mukhanov
{"title":"基于sfq磁偏驱动的约瑟夫森数字鉴相器控制","authors":"Laura Di Marino;Luigi Di Palma;Michele Riccio;Francesco Fienga;Marco Arzeo;Oleg Mukhanov","doi":"10.1109/TQE.2025.3583570","DOIUrl":null,"url":null,"abstract":"Quantum computation requires high-fidelity qubit readout, preserving the quantum state. In the case of superconductings qubits, readout is typically performed using a complex analog experimental setup operating at room temperature, which poses significant technological and economic barriers to large system scalability. An alternative approach is to perform a cryogenic on-chip qubit readout based on a Josephson digital phase detector (JDPD): a flux switchable device capable of digitizing the phase sign of a coherent input. The readout operation includes the flux excitation of the JDPD to evolve from a single- to a double-minima potential. In this work, the effect of the flux bias characteristics on the JDPD performances is studied numerically. To meet the identified requirements that maximize detection fidelity and tackle the engineering challenges, a cryogenic on-chip single flux quantum-based flux bias driver is proposed and discussed.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"6 ","pages":"1-8"},"PeriodicalIF":4.6000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11052858","citationCount":"0","resultStr":"{\"title\":\"Control of a Josephson Digital Phase Detector via an SFQ-Based Flux Bias Driver\",\"authors\":\"Laura Di Marino;Luigi Di Palma;Michele Riccio;Francesco Fienga;Marco Arzeo;Oleg Mukhanov\",\"doi\":\"10.1109/TQE.2025.3583570\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum computation requires high-fidelity qubit readout, preserving the quantum state. In the case of superconductings qubits, readout is typically performed using a complex analog experimental setup operating at room temperature, which poses significant technological and economic barriers to large system scalability. An alternative approach is to perform a cryogenic on-chip qubit readout based on a Josephson digital phase detector (JDPD): a flux switchable device capable of digitizing the phase sign of a coherent input. The readout operation includes the flux excitation of the JDPD to evolve from a single- to a double-minima potential. In this work, the effect of the flux bias characteristics on the JDPD performances is studied numerically. To meet the identified requirements that maximize detection fidelity and tackle the engineering challenges, a cryogenic on-chip single flux quantum-based flux bias driver is proposed and discussed.\",\"PeriodicalId\":100644,\"journal\":{\"name\":\"IEEE Transactions on Quantum Engineering\",\"volume\":\"6 \",\"pages\":\"1-8\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11052858\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Quantum Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11052858/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Quantum Engineering","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11052858/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Control of a Josephson Digital Phase Detector via an SFQ-Based Flux Bias Driver
Quantum computation requires high-fidelity qubit readout, preserving the quantum state. In the case of superconductings qubits, readout is typically performed using a complex analog experimental setup operating at room temperature, which poses significant technological and economic barriers to large system scalability. An alternative approach is to perform a cryogenic on-chip qubit readout based on a Josephson digital phase detector (JDPD): a flux switchable device capable of digitizing the phase sign of a coherent input. The readout operation includes the flux excitation of the JDPD to evolve from a single- to a double-minima potential. In this work, the effect of the flux bias characteristics on the JDPD performances is studied numerically. To meet the identified requirements that maximize detection fidelity and tackle the engineering challenges, a cryogenic on-chip single flux quantum-based flux bias driver is proposed and discussed.