{"title":"由颤子和里奇孤子得到的幂零李代数","authors":"Fumika Mizoguchi, Hiroshi Tamaru","doi":"10.1016/j.aim.2025.110464","DOIUrl":null,"url":null,"abstract":"<div><div>Nilpotent Lie groups with left-invariant metrics provide non-trivial examples of Ricci solitons. One typical example is given by the class of two-step nilpotent Lie algebras obtained from simple directed graphs. In this paper, however, we focus on the use of quivers to construct nilpotent Lie algebras. A quiver is a directed graph that allows loops and multiple arrows between two vertices. Utilizing the concept of paths within quivers, we introduce a method for constructing nilpotent Lie algebras from finite quivers without cycles. We prove that for all these Lie algebras, the corresponding simply-connected nilpotent Lie groups admit left-invariant Ricci solitons. The method we introduce constructs a broad family of Ricci soliton nilmanifolds with arbitrarily high degrees of nilpotency.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"480 ","pages":"Article 110464"},"PeriodicalIF":1.5000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nilpotent Lie algebras obtained by quivers and Ricci solitons\",\"authors\":\"Fumika Mizoguchi, Hiroshi Tamaru\",\"doi\":\"10.1016/j.aim.2025.110464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Nilpotent Lie groups with left-invariant metrics provide non-trivial examples of Ricci solitons. One typical example is given by the class of two-step nilpotent Lie algebras obtained from simple directed graphs. In this paper, however, we focus on the use of quivers to construct nilpotent Lie algebras. A quiver is a directed graph that allows loops and multiple arrows between two vertices. Utilizing the concept of paths within quivers, we introduce a method for constructing nilpotent Lie algebras from finite quivers without cycles. We prove that for all these Lie algebras, the corresponding simply-connected nilpotent Lie groups admit left-invariant Ricci solitons. The method we introduce constructs a broad family of Ricci soliton nilmanifolds with arbitrarily high degrees of nilpotency.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"480 \",\"pages\":\"Article 110464\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870825003627\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825003627","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Nilpotent Lie algebras obtained by quivers and Ricci solitons
Nilpotent Lie groups with left-invariant metrics provide non-trivial examples of Ricci solitons. One typical example is given by the class of two-step nilpotent Lie algebras obtained from simple directed graphs. In this paper, however, we focus on the use of quivers to construct nilpotent Lie algebras. A quiver is a directed graph that allows loops and multiple arrows between two vertices. Utilizing the concept of paths within quivers, we introduce a method for constructing nilpotent Lie algebras from finite quivers without cycles. We prove that for all these Lie algebras, the corresponding simply-connected nilpotent Lie groups admit left-invariant Ricci solitons. The method we introduce constructs a broad family of Ricci soliton nilmanifolds with arbitrarily high degrees of nilpotency.
期刊介绍:
Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.