{"title":"支持健全的多层次建模——多维建模方法的规范与实现","authors":"Thomas Kühne , Manfred A. Jeusfeld","doi":"10.1016/j.datak.2025.102481","DOIUrl":null,"url":null,"abstract":"<div><div>Multiple levels of classification naturally occur in many domains. Several multi-level modeling approaches account for this, and a subset of them attempt to provide their users with sanity-checking mechanisms in order to guard them against conceptually ill-formed models. Historically, the respective multi-level well-formedness schemes have either been overly restrictive or too lax. Orthogonal Ontological Classification has been proposed as a foundation for sound multi-level modeling that combines the selectivity of strict schemes with the flexibility afforded by laxer schemes. In this article, we present the second iteration of a formalization of Orthogonal Ontological Classification, which we empirically validated to demonstrate some of its hitherto only postulated claims using an implementation in <span>ConceptBase</span>. We discuss the expressiveness of the formal language used, <span>ConceptBase</span>’s evaluation efficiency, and the usability of our realization based on a digital twin example model.</div></div>","PeriodicalId":55184,"journal":{"name":"Data & Knowledge Engineering","volume":"160 ","pages":"Article 102481"},"PeriodicalIF":2.7000,"publicationDate":"2025-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Supporting Sound Multi-Level Modeling—Specification and Implementation of a Multi-Dimensional Modeling Approach\",\"authors\":\"Thomas Kühne , Manfred A. Jeusfeld\",\"doi\":\"10.1016/j.datak.2025.102481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Multiple levels of classification naturally occur in many domains. Several multi-level modeling approaches account for this, and a subset of them attempt to provide their users with sanity-checking mechanisms in order to guard them against conceptually ill-formed models. Historically, the respective multi-level well-formedness schemes have either been overly restrictive or too lax. Orthogonal Ontological Classification has been proposed as a foundation for sound multi-level modeling that combines the selectivity of strict schemes with the flexibility afforded by laxer schemes. In this article, we present the second iteration of a formalization of Orthogonal Ontological Classification, which we empirically validated to demonstrate some of its hitherto only postulated claims using an implementation in <span>ConceptBase</span>. We discuss the expressiveness of the formal language used, <span>ConceptBase</span>’s evaluation efficiency, and the usability of our realization based on a digital twin example model.</div></div>\",\"PeriodicalId\":55184,\"journal\":{\"name\":\"Data & Knowledge Engineering\",\"volume\":\"160 \",\"pages\":\"Article 102481\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data & Knowledge Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169023X2500076X\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data & Knowledge Engineering","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169023X2500076X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Supporting Sound Multi-Level Modeling—Specification and Implementation of a Multi-Dimensional Modeling Approach
Multiple levels of classification naturally occur in many domains. Several multi-level modeling approaches account for this, and a subset of them attempt to provide their users with sanity-checking mechanisms in order to guard them against conceptually ill-formed models. Historically, the respective multi-level well-formedness schemes have either been overly restrictive or too lax. Orthogonal Ontological Classification has been proposed as a foundation for sound multi-level modeling that combines the selectivity of strict schemes with the flexibility afforded by laxer schemes. In this article, we present the second iteration of a formalization of Orthogonal Ontological Classification, which we empirically validated to demonstrate some of its hitherto only postulated claims using an implementation in ConceptBase. We discuss the expressiveness of the formal language used, ConceptBase’s evaluation efficiency, and the usability of our realization based on a digital twin example model.
期刊介绍:
Data & Knowledge Engineering (DKE) stimulates the exchange of ideas and interaction between these two related fields of interest. DKE reaches a world-wide audience of researchers, designers, managers and users. The major aim of the journal is to identify, investigate and analyze the underlying principles in the design and effective use of these systems.