为热电剪裁石墨烯:BN共掺杂的位置依赖效应的理论见解

IF 3.9 Q3 PHYSICS, CONDENSED MATTER
Piyawong Poopanya , Pratik M. Gadhavi , Mina Talati , Kanchana Sivalertporn , Narayan N. Som , Abhishek Kumar Mishra
{"title":"为热电剪裁石墨烯:BN共掺杂的位置依赖效应的理论见解","authors":"Piyawong Poopanya ,&nbsp;Pratik M. Gadhavi ,&nbsp;Mina Talati ,&nbsp;Kanchana Sivalertporn ,&nbsp;Narayan N. Som ,&nbsp;Abhishek Kumar Mishra","doi":"10.1016/j.cocom.2025.e01106","DOIUrl":null,"url":null,"abstract":"<div><div>We present a comprehensive theoretical investigation of the structural, electronic, dynamical, transport, and thermoelectric properties of pristine graphene (C8) and boron–nitrogen (BN) co-doped graphene using density functional theory. Motivating from previous work of varying the relative positions of B and N dopants at ortho, meta, and para sites, leads to the enhancement in electronic thermal conductivity. We investigate position dependence of B and N co-doped graphene properties, with the phonon dispersion analysis, we confirm the dynamical stability of the BN co-doped systems. Among the configurations studied, C6BN<sub>1</sub>, and C6BN<sub>3</sub> exhibit p-type semiconducting behaviour, while C6BN<sub>2</sub> shows n-type characteristics. The Seebeck coefficient (S) and electrical conductivity (σ) increase with temperature, indicating strong thermoelectric potential. Fixing the position of boron, while varying the nitrogen doping site (para, meta, ortho) leads to phonon scattering at low frequencies, reducing thermal conductivity and enhancing thermoelectric performance. Notably, the figure of merit (ZT) for C6BN<sub>1</sub> reaches 2.30 at 800 K, demonstrating excellent thermoelectric efficiency. These results highlight the promising role of position-dependent BN co-doping in tailoring graphene's properties for advanced thermoelectric applications.</div></div>","PeriodicalId":46322,"journal":{"name":"Computational Condensed Matter","volume":"44 ","pages":"Article e01106"},"PeriodicalIF":3.9000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tailoring graphene for thermoelectric: Theoretical insights into position-dependent effects of BN Co-doping\",\"authors\":\"Piyawong Poopanya ,&nbsp;Pratik M. Gadhavi ,&nbsp;Mina Talati ,&nbsp;Kanchana Sivalertporn ,&nbsp;Narayan N. Som ,&nbsp;Abhishek Kumar Mishra\",\"doi\":\"10.1016/j.cocom.2025.e01106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We present a comprehensive theoretical investigation of the structural, electronic, dynamical, transport, and thermoelectric properties of pristine graphene (C8) and boron–nitrogen (BN) co-doped graphene using density functional theory. Motivating from previous work of varying the relative positions of B and N dopants at ortho, meta, and para sites, leads to the enhancement in electronic thermal conductivity. We investigate position dependence of B and N co-doped graphene properties, with the phonon dispersion analysis, we confirm the dynamical stability of the BN co-doped systems. Among the configurations studied, C6BN<sub>1</sub>, and C6BN<sub>3</sub> exhibit p-type semiconducting behaviour, while C6BN<sub>2</sub> shows n-type characteristics. The Seebeck coefficient (S) and electrical conductivity (σ) increase with temperature, indicating strong thermoelectric potential. Fixing the position of boron, while varying the nitrogen doping site (para, meta, ortho) leads to phonon scattering at low frequencies, reducing thermal conductivity and enhancing thermoelectric performance. Notably, the figure of merit (ZT) for C6BN<sub>1</sub> reaches 2.30 at 800 K, demonstrating excellent thermoelectric efficiency. These results highlight the promising role of position-dependent BN co-doping in tailoring graphene's properties for advanced thermoelectric applications.</div></div>\",\"PeriodicalId\":46322,\"journal\":{\"name\":\"Computational Condensed Matter\",\"volume\":\"44 \",\"pages\":\"Article e01106\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Condensed Matter\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352214325001066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Condensed Matter","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352214325001066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

我们利用密度泛函理论对原始石墨烯(C8)和硼氮(BN)共掺杂石墨烯的结构、电子、动力学、输运和热电性质进行了全面的理论研究。通过改变B和N掺杂剂在邻位、元位和对位的相对位置,可以提高电子导热性。我们研究了B和N共掺杂石墨烯性质的位置依赖性,通过声子色散分析,我们证实了BN共掺杂体系的动态稳定性。c6bnn1和C6BN3表现为p型半导体行为,C6BN2表现为n型半导体行为。塞贝克系数(S)和电导率(σ)随温度升高而增大,表明热电势强。固定硼的位置,同时改变氮掺杂位置(对位、元位、邻位),导致低频声子散射,降低导热系数,提高热电性能。值得注意的是,C6BN1在800 K时的品质值(ZT)达到2.30,表现出优异的热电效率。这些结果突出了位置依赖BN共掺杂在定制先进热电应用的石墨烯性能方面的有希望的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tailoring graphene for thermoelectric: Theoretical insights into position-dependent effects of BN Co-doping
We present a comprehensive theoretical investigation of the structural, electronic, dynamical, transport, and thermoelectric properties of pristine graphene (C8) and boron–nitrogen (BN) co-doped graphene using density functional theory. Motivating from previous work of varying the relative positions of B and N dopants at ortho, meta, and para sites, leads to the enhancement in electronic thermal conductivity. We investigate position dependence of B and N co-doped graphene properties, with the phonon dispersion analysis, we confirm the dynamical stability of the BN co-doped systems. Among the configurations studied, C6BN1, and C6BN3 exhibit p-type semiconducting behaviour, while C6BN2 shows n-type characteristics. The Seebeck coefficient (S) and electrical conductivity (σ) increase with temperature, indicating strong thermoelectric potential. Fixing the position of boron, while varying the nitrogen doping site (para, meta, ortho) leads to phonon scattering at low frequencies, reducing thermal conductivity and enhancing thermoelectric performance. Notably, the figure of merit (ZT) for C6BN1 reaches 2.30 at 800 K, demonstrating excellent thermoelectric efficiency. These results highlight the promising role of position-dependent BN co-doping in tailoring graphene's properties for advanced thermoelectric applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Condensed Matter
Computational Condensed Matter PHYSICS, CONDENSED MATTER-
CiteScore
3.70
自引率
9.50%
发文量
134
审稿时长
39 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信