Alz-QNet:用于研究阿尔茨海默病基因相互作用的量子回归网络

IF 6.3 2区 医学 Q1 BIOLOGY
Debanjan Konar , Neerav Sreekumar , Richard Jiang , Vaneet Aggarwal
{"title":"Alz-QNet:用于研究阿尔茨海默病基因相互作用的量子回归网络","authors":"Debanjan Konar ,&nbsp;Neerav Sreekumar ,&nbsp;Richard Jiang ,&nbsp;Vaneet Aggarwal","doi":"10.1016/j.compbiomed.2025.110837","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding the molecular-level mechanisms underpinning Alzheimer’s Disease (AD) by studying crucial genes associated with the disease remains a challenge. Alzheimer’s, being a multifactorial disease, requires understanding the gene-gene interactions underlying it for theranostics and progress. In this article, a novel attempt has been made using a quantum regression to decode how some crucial genes in the AD Amyloid Beta Precursor Protein (<span><math><mrow><mi>A</mi><mi>P</mi><mi>P</mi></mrow></math></span>), Sterol regulatory element binding transcription factor 14 (<span><math><mrow><mi>F</mi><mi>G</mi><mi>F</mi><mn>14</mn></mrow></math></span>), Yin Yang 1 (<span><math><mrow><mi>Y</mi><mi>Y</mi><mn>1</mn></mrow></math></span>), and Phospholipase D Family Member 3 (<span><math><mrow><mi>P</mi><mi>L</mi><mi>D</mi><mn>3</mn></mrow></math></span>) etc., become influenced by other prominent switching genes during disease progression, which may help in gene expression-based therapy for AD. Our proposed Quantum Regression Network for Alzheimer disease (Alz-QNet) introduces a pioneering approach with insights from the state-of-the-art Quantum Gene Regulatory Networks (QGRNs) to unravel the gene interactions involved in AD pathology, particularly within the Entorhinal Cortex (EC), where early pathological changes occur. Using the proposed Alz-QNet framework, we explore the interactions between key genes (<span><math><mrow><mi>A</mi><mi>P</mi><mi>P</mi></mrow></math></span>, <span><math><mrow><mi>F</mi><mi>G</mi><mi>F</mi><mn>14</mn></mrow></math></span>, <span><math><mrow><mi>Y</mi><mi>Y</mi><mn>1</mn></mrow></math></span>, <span><math><mrow><mi>E</mi><mi>G</mi><mi>R</mi><mn>1</mn></mrow></math></span>, <span><math><mrow><mi>G</mi><mi>A</mi><mi>S</mi><mn>7</mn></mrow></math></span>, <span><math><mrow><mi>A</mi><mi>K</mi><mi>T</mi><mn>3</mn></mrow></math></span>, <span><math><mrow><mi>S</mi><mi>R</mi><mi>E</mi><mi>B</mi><mi>F</mi><mn>2</mn></mrow></math></span>, and <span><math><mrow><mi>P</mi><mi>L</mi><mi>D</mi><mn>3</mn></mrow></math></span>) within the CE microenvironment of AD patients, studying genetic samples from the database <span><math><mrow><mi>G</mi><mi>S</mi><mi>E</mi><mn>138852</mn></mrow></math></span>, all of which are believed to play a crucial role in the progression of AD. Our investigation uncovers intricate gene-gene interactions, shedding light on the potential regulatory mechanisms that underlie the pathogenesis of AD, which help us to find potential gene inhibitors or regulators for theranostics.</div></div>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"196 ","pages":"Article 110837"},"PeriodicalIF":6.3000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Alz-QNet: A quantum regression network for studying Alzheimer’s gene interactions\",\"authors\":\"Debanjan Konar ,&nbsp;Neerav Sreekumar ,&nbsp;Richard Jiang ,&nbsp;Vaneet Aggarwal\",\"doi\":\"10.1016/j.compbiomed.2025.110837\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Understanding the molecular-level mechanisms underpinning Alzheimer’s Disease (AD) by studying crucial genes associated with the disease remains a challenge. Alzheimer’s, being a multifactorial disease, requires understanding the gene-gene interactions underlying it for theranostics and progress. In this article, a novel attempt has been made using a quantum regression to decode how some crucial genes in the AD Amyloid Beta Precursor Protein (<span><math><mrow><mi>A</mi><mi>P</mi><mi>P</mi></mrow></math></span>), Sterol regulatory element binding transcription factor 14 (<span><math><mrow><mi>F</mi><mi>G</mi><mi>F</mi><mn>14</mn></mrow></math></span>), Yin Yang 1 (<span><math><mrow><mi>Y</mi><mi>Y</mi><mn>1</mn></mrow></math></span>), and Phospholipase D Family Member 3 (<span><math><mrow><mi>P</mi><mi>L</mi><mi>D</mi><mn>3</mn></mrow></math></span>) etc., become influenced by other prominent switching genes during disease progression, which may help in gene expression-based therapy for AD. Our proposed Quantum Regression Network for Alzheimer disease (Alz-QNet) introduces a pioneering approach with insights from the state-of-the-art Quantum Gene Regulatory Networks (QGRNs) to unravel the gene interactions involved in AD pathology, particularly within the Entorhinal Cortex (EC), where early pathological changes occur. Using the proposed Alz-QNet framework, we explore the interactions between key genes (<span><math><mrow><mi>A</mi><mi>P</mi><mi>P</mi></mrow></math></span>, <span><math><mrow><mi>F</mi><mi>G</mi><mi>F</mi><mn>14</mn></mrow></math></span>, <span><math><mrow><mi>Y</mi><mi>Y</mi><mn>1</mn></mrow></math></span>, <span><math><mrow><mi>E</mi><mi>G</mi><mi>R</mi><mn>1</mn></mrow></math></span>, <span><math><mrow><mi>G</mi><mi>A</mi><mi>S</mi><mn>7</mn></mrow></math></span>, <span><math><mrow><mi>A</mi><mi>K</mi><mi>T</mi><mn>3</mn></mrow></math></span>, <span><math><mrow><mi>S</mi><mi>R</mi><mi>E</mi><mi>B</mi><mi>F</mi><mn>2</mn></mrow></math></span>, and <span><math><mrow><mi>P</mi><mi>L</mi><mi>D</mi><mn>3</mn></mrow></math></span>) within the CE microenvironment of AD patients, studying genetic samples from the database <span><math><mrow><mi>G</mi><mi>S</mi><mi>E</mi><mn>138852</mn></mrow></math></span>, all of which are believed to play a crucial role in the progression of AD. Our investigation uncovers intricate gene-gene interactions, shedding light on the potential regulatory mechanisms that underlie the pathogenesis of AD, which help us to find potential gene inhibitors or regulators for theranostics.</div></div>\",\"PeriodicalId\":10578,\"journal\":{\"name\":\"Computers in biology and medicine\",\"volume\":\"196 \",\"pages\":\"Article 110837\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers in biology and medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010482525011886\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010482525011886","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

通过研究与阿尔茨海默病相关的关键基因来了解阿尔茨海默病(AD)的分子水平机制仍然是一个挑战。阿尔茨海默病是一种多因素疾病,需要了解其治疗和进展背后的基因-基因相互作用。本文利用量子回归方法,对AD淀粉样蛋白β前体蛋白(APP)、甾醇调节元件结合转录因子14 (FGF14)、阴阳1 (YY1)、磷脂酶D家族成员3 (PLD3)等关键基因在疾病进展过程中如何受到其他重要开关基因的影响进行了全新的尝试,这可能有助于AD基因表达治疗。我们提出的阿尔茨海默病量子回归网络(Alz-QNet)引入了一种开创性的方法,结合最先进的量子基因调控网络(qgrn)的见解,揭示了阿尔茨海默病病理中涉及的基因相互作用,特别是在早期病理变化发生的内嗅皮层(EC)内。利用提出的Alz-QNet框架,我们研究了AD患者CE微环境中关键基因(APP、FGF14、YY1、EGR1、GAS7、AKT3、SREBF2和PLD3)之间的相互作用,研究了数据库GSE138852中的遗传样本,所有这些基因都被认为在AD的进展中起着至关重要的作用。我们的研究揭示了复杂的基因-基因相互作用,揭示了阿尔茨海默病发病机制的潜在调控机制,这有助于我们找到潜在的基因抑制剂或治疗调节剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Alz-QNet: A quantum regression network for studying Alzheimer’s gene interactions
Understanding the molecular-level mechanisms underpinning Alzheimer’s Disease (AD) by studying crucial genes associated with the disease remains a challenge. Alzheimer’s, being a multifactorial disease, requires understanding the gene-gene interactions underlying it for theranostics and progress. In this article, a novel attempt has been made using a quantum regression to decode how some crucial genes in the AD Amyloid Beta Precursor Protein (APP), Sterol regulatory element binding transcription factor 14 (FGF14), Yin Yang 1 (YY1), and Phospholipase D Family Member 3 (PLD3) etc., become influenced by other prominent switching genes during disease progression, which may help in gene expression-based therapy for AD. Our proposed Quantum Regression Network for Alzheimer disease (Alz-QNet) introduces a pioneering approach with insights from the state-of-the-art Quantum Gene Regulatory Networks (QGRNs) to unravel the gene interactions involved in AD pathology, particularly within the Entorhinal Cortex (EC), where early pathological changes occur. Using the proposed Alz-QNet framework, we explore the interactions between key genes (APP, FGF14, YY1, EGR1, GAS7, AKT3, SREBF2, and PLD3) within the CE microenvironment of AD patients, studying genetic samples from the database GSE138852, all of which are believed to play a crucial role in the progression of AD. Our investigation uncovers intricate gene-gene interactions, shedding light on the potential regulatory mechanisms that underlie the pathogenesis of AD, which help us to find potential gene inhibitors or regulators for theranostics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers in biology and medicine
Computers in biology and medicine 工程技术-工程:生物医学
CiteScore
11.70
自引率
10.40%
发文量
1086
审稿时长
74 days
期刊介绍: Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信