p型热电KMg4Sb3-xBix中自旋轨道耦合驱动的拓扑跃迁:DFT研究

IF 3.3 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR
Chenghao Xie , Minghao Ye , Zhiying Liu , Jiabei Liu , Guoqing Ding , Qingjie Zhang , Xinfeng Tang , Gangjian Tan
{"title":"p型热电KMg4Sb3-xBix中自旋轨道耦合驱动的拓扑跃迁:DFT研究","authors":"Chenghao Xie ,&nbsp;Minghao Ye ,&nbsp;Zhiying Liu ,&nbsp;Jiabei Liu ,&nbsp;Guoqing Ding ,&nbsp;Qingjie Zhang ,&nbsp;Xinfeng Tang ,&nbsp;Gangjian Tan","doi":"10.1016/j.solidstatesciences.2025.108038","DOIUrl":null,"url":null,"abstract":"<div><div>We report a theoretical study of the KMg<sub>4</sub>Sb<sub>3-<em>x</em></sub>Bi<sub><em>x</em></sub> (0 ≤ <em>x</em> ≤ 3) Zintl compounds, focusing on how increasing Bi content tunes the band topology and transport properties. Density-functional theory (DFT) band structure calculations show that Bi substitution systematically narrows the band gap and sharpens the valence-band edge. In particular, KMg<sub>4</sub>Sb<sub>3</sub> is a wide-gap semiconductor, whereas KMg<sub>4</sub>Bi<sub>3</sub> has a closed gap that undergoes a topological transition. Artificially scaling the spin-orbit coupling (SOC) strength in KMg<sub>4</sub>Sb<sub>3</sub> (0–300 %) reproduces the Bi induced evolution of band structures, confirming that SOC is the driving force. Phonon and Boltzmann-transport calculations show that the sample of <em>x</em> = 1.5 maximally suppresses lattice thermal conductivity, while enhancing carrier mobility. Consequently, the intermediate alloy KMg<sub>4</sub>Sb<sub>1.5</sub>Bi<sub>1.5</sub> achieves an ultrahigh <em>ZT</em>∼0.5 at 300 K and ∼2.7 at 800 K under proper <em>p</em>-type doping. Our work establishes “SOC-tuned topological transition” as a general design strategy, uniting phonon-glass architectures with topological band engineering to achieve high-efficiency thermoelectric materials.</div></div>","PeriodicalId":432,"journal":{"name":"Solid State Sciences","volume":"168 ","pages":"Article 108038"},"PeriodicalIF":3.3000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spin-orbit coupling driven topological transition in p-type thermoelectric KMg4Sb3-xBix: a DFT study\",\"authors\":\"Chenghao Xie ,&nbsp;Minghao Ye ,&nbsp;Zhiying Liu ,&nbsp;Jiabei Liu ,&nbsp;Guoqing Ding ,&nbsp;Qingjie Zhang ,&nbsp;Xinfeng Tang ,&nbsp;Gangjian Tan\",\"doi\":\"10.1016/j.solidstatesciences.2025.108038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We report a theoretical study of the KMg<sub>4</sub>Sb<sub>3-<em>x</em></sub>Bi<sub><em>x</em></sub> (0 ≤ <em>x</em> ≤ 3) Zintl compounds, focusing on how increasing Bi content tunes the band topology and transport properties. Density-functional theory (DFT) band structure calculations show that Bi substitution systematically narrows the band gap and sharpens the valence-band edge. In particular, KMg<sub>4</sub>Sb<sub>3</sub> is a wide-gap semiconductor, whereas KMg<sub>4</sub>Bi<sub>3</sub> has a closed gap that undergoes a topological transition. Artificially scaling the spin-orbit coupling (SOC) strength in KMg<sub>4</sub>Sb<sub>3</sub> (0–300 %) reproduces the Bi induced evolution of band structures, confirming that SOC is the driving force. Phonon and Boltzmann-transport calculations show that the sample of <em>x</em> = 1.5 maximally suppresses lattice thermal conductivity, while enhancing carrier mobility. Consequently, the intermediate alloy KMg<sub>4</sub>Sb<sub>1.5</sub>Bi<sub>1.5</sub> achieves an ultrahigh <em>ZT</em>∼0.5 at 300 K and ∼2.7 at 800 K under proper <em>p</em>-type doping. Our work establishes “SOC-tuned topological transition” as a general design strategy, uniting phonon-glass architectures with topological band engineering to achieve high-efficiency thermoelectric materials.</div></div>\",\"PeriodicalId\":432,\"journal\":{\"name\":\"Solid State Sciences\",\"volume\":\"168 \",\"pages\":\"Article 108038\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid State Sciences\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S129325582500216X\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Sciences","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S129325582500216X","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

本文报道了KMg4Sb3-xBix(0≤x≤3)Zintl化合物的理论研究,重点关注Bi含量的增加如何调节能带拓扑和输运性质。密度泛函理论(DFT)带结构计算表明,铋取代系统地缩小了带隙,使价带边缘变得锋利。特别是,KMg4Sb3是一种宽隙半导体,而KMg4Bi3具有经过拓扑跃迁的闭合隙。人为缩放KMg4Sb3(0 - 300%)中自旋轨道耦合(SOC)强度,再现了铋诱导的带结构演化,证实了SOC是驱动因素。声子和玻尔兹曼输运计算表明,x = 1.5的样品最大程度地抑制了晶格热导率,同时增强了载流子迁移率。因此,在适当的p型掺杂下,中间合金kmg4sb1.5 . bi1.5在300 K和800 K时获得了超高的ZT ~ 0.5和~ 2.7。我们的工作建立了“soc调谐拓扑转换”作为一般设计策略,将声子玻璃结构与拓扑带工程结合起来,以实现高效热电材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Spin-orbit coupling driven topological transition in p-type thermoelectric KMg4Sb3-xBix: a DFT study

Spin-orbit coupling driven topological transition in p-type thermoelectric KMg4Sb3-xBix: a DFT study
We report a theoretical study of the KMg4Sb3-xBix (0 ≤ x ≤ 3) Zintl compounds, focusing on how increasing Bi content tunes the band topology and transport properties. Density-functional theory (DFT) band structure calculations show that Bi substitution systematically narrows the band gap and sharpens the valence-band edge. In particular, KMg4Sb3 is a wide-gap semiconductor, whereas KMg4Bi3 has a closed gap that undergoes a topological transition. Artificially scaling the spin-orbit coupling (SOC) strength in KMg4Sb3 (0–300 %) reproduces the Bi induced evolution of band structures, confirming that SOC is the driving force. Phonon and Boltzmann-transport calculations show that the sample of x = 1.5 maximally suppresses lattice thermal conductivity, while enhancing carrier mobility. Consequently, the intermediate alloy KMg4Sb1.5Bi1.5 achieves an ultrahigh ZT∼0.5 at 300 K and ∼2.7 at 800 K under proper p-type doping. Our work establishes “SOC-tuned topological transition” as a general design strategy, uniting phonon-glass architectures with topological band engineering to achieve high-efficiency thermoelectric materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solid State Sciences
Solid State Sciences 化学-无机化学与核化学
CiteScore
6.60
自引率
2.90%
发文量
214
审稿时长
27 days
期刊介绍: Solid State Sciences is the journal for researchers from the broad solid state chemistry and physics community. It publishes key articles on all aspects of solid state synthesis, structure-property relationships, theory and functionalities, in relation with experiments. Key topics for stand-alone papers and special issues: -Novel ways of synthesis, inorganic functional materials, including porous and glassy materials, hybrid organic-inorganic compounds and nanomaterials -Physical properties, emphasizing but not limited to the electrical, magnetical and optical features -Materials related to information technology and energy and environmental sciences. The journal publishes feature articles from experts in the field upon invitation. Solid State Sciences - your gateway to energy-related materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信