求解Navier-Stokes方程的快速差分梯度正负动量变压器算子网络

IF 5.6 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Ruslan Abdulkadirov , Pavel Lyakhov , Maxim Bergerman , Nikolay Nagornov
{"title":"求解Navier-Stokes方程的快速差分梯度正负动量变压器算子网络","authors":"Ruslan Abdulkadirov ,&nbsp;Pavel Lyakhov ,&nbsp;Maxim Bergerman ,&nbsp;Nikolay Nagornov","doi":"10.1016/j.chaos.2025.116964","DOIUrl":null,"url":null,"abstract":"<div><div>Modern machine learning approaches solve many problems in human activity. Recent models of neural networks find applications in solving equations of mathematical physics. Along with traditional numerical methods, physics-informed learning builds the approximate solution with a relatively small <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> and mean squared errors. In this paper, we propose a fast difference-gradient positive–negative momentum optimizer that achieves a global minimum of the loss function with a convergence rate <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mo>log</mo><mi>T</mi><mo>)</mo></mrow></mrow></math></span> and stability <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow></math></span>. This optimization algorithm solves loss function minimization problems such as gradient discontinuity, vanishing gradient and local minimum traversal. Analysis on the set of test functions confirms the superiority of the proposed optimizer over state-of-the-art methods. Through the modified positive–negative moment estimation, the proposed optimizer gives more appropriate weight updates in physics-informed, deep operator, and transformer operator neural networks in Navier–Stokes equation solving. In particular, the proposed optimizer minimizes the loss function better than known analogs in solving <span><math><mrow><mn>2</mn><mi>d</mi></mrow></math></span>-Kovasznay, <span><math><mrow><mo>(</mo><mn>2</mn><mi>d</mi><mo>+</mo><mi>t</mi><mo>)</mo></mrow></math></span>-Taylor–Green, <span><math><mrow><mo>(</mo><mn>3</mn><mi>d</mi><mo>+</mo><mi>t</mi><mo>)</mo></mrow></math></span>-Beltrami, and <span><math><mrow><mo>(</mo><mn>2</mn><mi>d</mi><mo>+</mo><mi>t</mi><mo>)</mo></mrow></math></span> circular cylindrical flows. Fast difference gradient positive–negative moment estimation allows the physics-informed model to reduce the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> and mean squared errors solution by <span><math><mrow><mn>14</mn><mo>.</mo><mn>6</mn><mo>−</mo><mn>53</mn><mo>.</mo><mn>9</mn></mrow></math></span> percentage points. The proposed fast difference gradient positive–negative momentum can increase the approximate solutions of partial differential equations in physics-informed neural, deep operator, and transformer operator networks.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"200 ","pages":"Article 116964"},"PeriodicalIF":5.6000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transformer operator network with fast difference gradient positive–negative momentum for solving Navier–Stokes equations\",\"authors\":\"Ruslan Abdulkadirov ,&nbsp;Pavel Lyakhov ,&nbsp;Maxim Bergerman ,&nbsp;Nikolay Nagornov\",\"doi\":\"10.1016/j.chaos.2025.116964\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Modern machine learning approaches solve many problems in human activity. Recent models of neural networks find applications in solving equations of mathematical physics. Along with traditional numerical methods, physics-informed learning builds the approximate solution with a relatively small <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> and mean squared errors. In this paper, we propose a fast difference-gradient positive–negative momentum optimizer that achieves a global minimum of the loss function with a convergence rate <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mo>log</mo><mi>T</mi><mo>)</mo></mrow></mrow></math></span> and stability <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow></math></span>. This optimization algorithm solves loss function minimization problems such as gradient discontinuity, vanishing gradient and local minimum traversal. Analysis on the set of test functions confirms the superiority of the proposed optimizer over state-of-the-art methods. Through the modified positive–negative moment estimation, the proposed optimizer gives more appropriate weight updates in physics-informed, deep operator, and transformer operator neural networks in Navier–Stokes equation solving. In particular, the proposed optimizer minimizes the loss function better than known analogs in solving <span><math><mrow><mn>2</mn><mi>d</mi></mrow></math></span>-Kovasznay, <span><math><mrow><mo>(</mo><mn>2</mn><mi>d</mi><mo>+</mo><mi>t</mi><mo>)</mo></mrow></math></span>-Taylor–Green, <span><math><mrow><mo>(</mo><mn>3</mn><mi>d</mi><mo>+</mo><mi>t</mi><mo>)</mo></mrow></math></span>-Beltrami, and <span><math><mrow><mo>(</mo><mn>2</mn><mi>d</mi><mo>+</mo><mi>t</mi><mo>)</mo></mrow></math></span> circular cylindrical flows. Fast difference gradient positive–negative moment estimation allows the physics-informed model to reduce the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> and mean squared errors solution by <span><math><mrow><mn>14</mn><mo>.</mo><mn>6</mn><mo>−</mo><mn>53</mn><mo>.</mo><mn>9</mn></mrow></math></span> percentage points. The proposed fast difference gradient positive–negative momentum can increase the approximate solutions of partial differential equations in physics-informed neural, deep operator, and transformer operator networks.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"200 \",\"pages\":\"Article 116964\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077925009774\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925009774","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

现代机器学习方法解决了人类活动中的许多问题。最近的神经网络模型在求解数学物理方程中得到了应用。与传统的数值方法一样,基于物理的学习方法构建了具有相对较小的L2和均方误差的近似解。在本文中,我们提出了一种快速的差分梯度正负动量优化器,它以O(logT)的收敛速率和O(T)的稳定性实现损失函数的全局最小值。该优化算法解决了梯度不连续、梯度消失和局部最小遍历等损失函数最小化问题。对测试函数集的分析证实了所提出的优化器优于最先进的方法。通过改进的正负矩估计,该优化器在求解Navier-Stokes方程的物理信息、深度算子和变压器算子神经网络中给出了更合适的权值更新。特别是,所提出的优化器在求解2d- kovasznay、(2d+t) -Taylor-Green、(3d+t)-Beltrami和(2d+t)圆筒形流时,比已知的类似物更好地最小化了损失函数。快速差分梯度正负矩估计允许物理信息模型将L2和均方误差解降低14.6 - 53.9个百分点。所提出的快速差分梯度正负动量可以增加物理信息神经网络、深度算子和变压器算子网络中偏微分方程的近似解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transformer operator network with fast difference gradient positive–negative momentum for solving Navier–Stokes equations
Modern machine learning approaches solve many problems in human activity. Recent models of neural networks find applications in solving equations of mathematical physics. Along with traditional numerical methods, physics-informed learning builds the approximate solution with a relatively small L2 and mean squared errors. In this paper, we propose a fast difference-gradient positive–negative momentum optimizer that achieves a global minimum of the loss function with a convergence rate O(logT) and stability O(T). This optimization algorithm solves loss function minimization problems such as gradient discontinuity, vanishing gradient and local minimum traversal. Analysis on the set of test functions confirms the superiority of the proposed optimizer over state-of-the-art methods. Through the modified positive–negative moment estimation, the proposed optimizer gives more appropriate weight updates in physics-informed, deep operator, and transformer operator neural networks in Navier–Stokes equation solving. In particular, the proposed optimizer minimizes the loss function better than known analogs in solving 2d-Kovasznay, (2d+t)-Taylor–Green, (3d+t)-Beltrami, and (2d+t) circular cylindrical flows. Fast difference gradient positive–negative moment estimation allows the physics-informed model to reduce the L2 and mean squared errors solution by 14.653.9 percentage points. The proposed fast difference gradient positive–negative momentum can increase the approximate solutions of partial differential equations in physics-informed neural, deep operator, and transformer operator networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信