{"title":"无界区域上分数阶随机金兹堡-朗道方程的高阶矩度量空间中的测度吸引子和测度演化系统","authors":"Tingjin Jiao , Jibing Leng , Renhai Wang , Sangui Zeng","doi":"10.1016/j.chaos.2025.116945","DOIUrl":null,"url":null,"abstract":"<div><div>We initially study pullback measure attractors (PMAs) and measure evolution systems (MESs) of fractional stochastic complex-valued Ginzburg–Landau equations on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>. We first prove the global-in-time well-posedness of the equation in <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn><mi>ϑ</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>,</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span> with <span><math><mrow><mi>H</mi><mo>≔</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> for any <span><math><mrow><mi>ϑ</mi><mo>⩾</mo><mn>1</mn></mrow></math></span>, and then demonstrate the existence and uniqueness of PMAs in <span><math><mrow><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn><mi>ϑ</mi></mrow></msub><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>P</mi><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow></mrow></msub><mo>)</mo></mrow></math></span> the high-order moment metric space of probability measures on <span><math><mi>H</mi></math></span>. By the structures of PMAs rather than the Krylov–Bogolyubov method, we prove that the time-inhomogeneous transition operator has a MES in <span><math><mrow><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn><mi>ϑ</mi></mrow></msub><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>P</mi><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow></mrow></msub><mo>)</mo></mrow></math></span>. The upper semicontinuity of the PMAs is established as the noise intensity <span><math><mi>ϵ</mi></math></span> converges to <span><math><msub><mrow><mi>ϵ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> in <span><math><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></math></span>. Under a large damping condition, we prove that the PMA is a singleton set, and establish the uniqueness, exponentially mixing and stability of MESs, periodic measures, and invariant measures of the corresponding systems. The difficulties caused by the non-monotonic drift term and the non-compactness of the standard Sobolev embedding on unbounded domains are surmounted by a balance condition <span><math><mrow><msqrt><mrow><mn>2</mn><mi>β</mi><mo>+</mo><mn>1</mn></mrow></msqrt><mo>⩾</mo><mrow><mo>|</mo><mi>η</mi><mi>β</mi><mo>|</mo></mrow></mrow></math></span> and the idea of uniform tail-ends estimates. Several numerical simulations are provided for above qualitative analysis. The methods used in this paper can be applied to other stochastic real or complex-valued PDEs.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"200 ","pages":"Article 116945"},"PeriodicalIF":5.6000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measure attractors and measure evolution systems in high-order moment metric space for fractional stochastic Ginzburg–Landau equations on unbounded domains\",\"authors\":\"Tingjin Jiao , Jibing Leng , Renhai Wang , Sangui Zeng\",\"doi\":\"10.1016/j.chaos.2025.116945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We initially study pullback measure attractors (PMAs) and measure evolution systems (MESs) of fractional stochastic complex-valued Ginzburg–Landau equations on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>. We first prove the global-in-time well-posedness of the equation in <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn><mi>ϑ</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>,</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span> with <span><math><mrow><mi>H</mi><mo>≔</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> for any <span><math><mrow><mi>ϑ</mi><mo>⩾</mo><mn>1</mn></mrow></math></span>, and then demonstrate the existence and uniqueness of PMAs in <span><math><mrow><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn><mi>ϑ</mi></mrow></msub><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>P</mi><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow></mrow></msub><mo>)</mo></mrow></math></span> the high-order moment metric space of probability measures on <span><math><mi>H</mi></math></span>. By the structures of PMAs rather than the Krylov–Bogolyubov method, we prove that the time-inhomogeneous transition operator has a MES in <span><math><mrow><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn><mi>ϑ</mi></mrow></msub><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>P</mi><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow></mrow></msub><mo>)</mo></mrow></math></span>. The upper semicontinuity of the PMAs is established as the noise intensity <span><math><mi>ϵ</mi></math></span> converges to <span><math><msub><mrow><mi>ϵ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> in <span><math><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></math></span>. Under a large damping condition, we prove that the PMA is a singleton set, and establish the uniqueness, exponentially mixing and stability of MESs, periodic measures, and invariant measures of the corresponding systems. The difficulties caused by the non-monotonic drift term and the non-compactness of the standard Sobolev embedding on unbounded domains are surmounted by a balance condition <span><math><mrow><msqrt><mrow><mn>2</mn><mi>β</mi><mo>+</mo><mn>1</mn></mrow></msqrt><mo>⩾</mo><mrow><mo>|</mo><mi>η</mi><mi>β</mi><mo>|</mo></mrow></mrow></math></span> and the idea of uniform tail-ends estimates. Several numerical simulations are provided for above qualitative analysis. The methods used in this paper can be applied to other stochastic real or complex-valued PDEs.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"200 \",\"pages\":\"Article 116945\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077925009580\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925009580","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Measure attractors and measure evolution systems in high-order moment metric space for fractional stochastic Ginzburg–Landau equations on unbounded domains
We initially study pullback measure attractors (PMAs) and measure evolution systems (MESs) of fractional stochastic complex-valued Ginzburg–Landau equations on . We first prove the global-in-time well-posedness of the equation in with for any , and then demonstrate the existence and uniqueness of PMAs in the high-order moment metric space of probability measures on . By the structures of PMAs rather than the Krylov–Bogolyubov method, we prove that the time-inhomogeneous transition operator has a MES in . The upper semicontinuity of the PMAs is established as the noise intensity converges to in . Under a large damping condition, we prove that the PMA is a singleton set, and establish the uniqueness, exponentially mixing and stability of MESs, periodic measures, and invariant measures of the corresponding systems. The difficulties caused by the non-monotonic drift term and the non-compactness of the standard Sobolev embedding on unbounded domains are surmounted by a balance condition and the idea of uniform tail-ends estimates. Several numerical simulations are provided for above qualitative analysis. The methods used in this paper can be applied to other stochastic real or complex-valued PDEs.
期刊介绍:
Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.