无界区域上分数阶随机金兹堡-朗道方程的高阶矩度量空间中的测度吸引子和测度演化系统

IF 5.6 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Tingjin Jiao , Jibing Leng , Renhai Wang , Sangui Zeng
{"title":"无界区域上分数阶随机金兹堡-朗道方程的高阶矩度量空间中的测度吸引子和测度演化系统","authors":"Tingjin Jiao ,&nbsp;Jibing Leng ,&nbsp;Renhai Wang ,&nbsp;Sangui Zeng","doi":"10.1016/j.chaos.2025.116945","DOIUrl":null,"url":null,"abstract":"<div><div>We initially study pullback measure attractors (PMAs) and measure evolution systems (MESs) of fractional stochastic complex-valued Ginzburg–Landau equations on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>. We first prove the global-in-time well-posedness of the equation in <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn><mi>ϑ</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>,</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span> with <span><math><mrow><mi>H</mi><mo>≔</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> for any <span><math><mrow><mi>ϑ</mi><mo>⩾</mo><mn>1</mn></mrow></math></span>, and then demonstrate the existence and uniqueness of PMAs in <span><math><mrow><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn><mi>ϑ</mi></mrow></msub><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>P</mi><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow></mrow></msub><mo>)</mo></mrow></math></span> the high-order moment metric space of probability measures on <span><math><mi>H</mi></math></span>. By the structures of PMAs rather than the Krylov–Bogolyubov method, we prove that the time-inhomogeneous transition operator has a MES in <span><math><mrow><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn><mi>ϑ</mi></mrow></msub><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>P</mi><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow></mrow></msub><mo>)</mo></mrow></math></span>. The upper semicontinuity of the PMAs is established as the noise intensity <span><math><mi>ϵ</mi></math></span> converges to <span><math><msub><mrow><mi>ϵ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> in <span><math><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></math></span>. Under a large damping condition, we prove that the PMA is a singleton set, and establish the uniqueness, exponentially mixing and stability of MESs, periodic measures, and invariant measures of the corresponding systems. The difficulties caused by the non-monotonic drift term and the non-compactness of the standard Sobolev embedding on unbounded domains are surmounted by a balance condition <span><math><mrow><msqrt><mrow><mn>2</mn><mi>β</mi><mo>+</mo><mn>1</mn></mrow></msqrt><mo>⩾</mo><mrow><mo>|</mo><mi>η</mi><mi>β</mi><mo>|</mo></mrow></mrow></math></span> and the idea of uniform tail-ends estimates. Several numerical simulations are provided for above qualitative analysis. The methods used in this paper can be applied to other stochastic real or complex-valued PDEs.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"200 ","pages":"Article 116945"},"PeriodicalIF":5.6000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measure attractors and measure evolution systems in high-order moment metric space for fractional stochastic Ginzburg–Landau equations on unbounded domains\",\"authors\":\"Tingjin Jiao ,&nbsp;Jibing Leng ,&nbsp;Renhai Wang ,&nbsp;Sangui Zeng\",\"doi\":\"10.1016/j.chaos.2025.116945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We initially study pullback measure attractors (PMAs) and measure evolution systems (MESs) of fractional stochastic complex-valued Ginzburg–Landau equations on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>. We first prove the global-in-time well-posedness of the equation in <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn><mi>ϑ</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>,</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span> with <span><math><mrow><mi>H</mi><mo>≔</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> for any <span><math><mrow><mi>ϑ</mi><mo>⩾</mo><mn>1</mn></mrow></math></span>, and then demonstrate the existence and uniqueness of PMAs in <span><math><mrow><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn><mi>ϑ</mi></mrow></msub><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>P</mi><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow></mrow></msub><mo>)</mo></mrow></math></span> the high-order moment metric space of probability measures on <span><math><mi>H</mi></math></span>. By the structures of PMAs rather than the Krylov–Bogolyubov method, we prove that the time-inhomogeneous transition operator has a MES in <span><math><mrow><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn><mi>ϑ</mi></mrow></msub><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>P</mi><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow></mrow></msub><mo>)</mo></mrow></math></span>. The upper semicontinuity of the PMAs is established as the noise intensity <span><math><mi>ϵ</mi></math></span> converges to <span><math><msub><mrow><mi>ϵ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> in <span><math><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></math></span>. Under a large damping condition, we prove that the PMA is a singleton set, and establish the uniqueness, exponentially mixing and stability of MESs, periodic measures, and invariant measures of the corresponding systems. The difficulties caused by the non-monotonic drift term and the non-compactness of the standard Sobolev embedding on unbounded domains are surmounted by a balance condition <span><math><mrow><msqrt><mrow><mn>2</mn><mi>β</mi><mo>+</mo><mn>1</mn></mrow></msqrt><mo>⩾</mo><mrow><mo>|</mo><mi>η</mi><mi>β</mi><mo>|</mo></mrow></mrow></math></span> and the idea of uniform tail-ends estimates. Several numerical simulations are provided for above qualitative analysis. The methods used in this paper can be applied to other stochastic real or complex-valued PDEs.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"200 \",\"pages\":\"Article 116945\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077925009580\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925009580","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

我们首先研究了Rd上分数阶随机复值ginzberg - landau方程的回拉测度吸引子(PMAs)和测度演化系统(MESs)。我们首先证明了在任意ν小于或等于1的情况下,在L2(Ω,H)中包含H的L2(Rd)的方程的全局时态良好性,然后证明了在H上概率测度的高阶矩度量空间(p2(H),dP(H))中的PMAs的存在性和唯一性。通过PMAs的结构而不是Krylov-Bogolyubov方法,证明了时间非齐次跃迁算子在(p2p0 (H),dP(H))中具有MES。当噪声强度在[0,1]中收敛到ϵ0时,pma的上半连续性被建立。在大阻尼条件下,证明了PMA是一个单态集,并建立了相应系统的MESs、周期测度和不变测度的唯一性、指数混合性和稳定性。由非单调漂移项和在无界域上标准Sobolev嵌入的非紧致性引起的困难由平衡条件2β+1小于或等于|ηβ|和均匀尾端估计的想法所克服。为上述定性分析提供了几个数值模拟。本文所采用的方法也适用于其他随机实值或复值偏微分方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Measure attractors and measure evolution systems in high-order moment metric space for fractional stochastic Ginzburg–Landau equations on unbounded domains
We initially study pullback measure attractors (PMAs) and measure evolution systems (MESs) of fractional stochastic complex-valued Ginzburg–Landau equations on Rd. We first prove the global-in-time well-posedness of the equation in L2ϑ(Ω,H) with HL2(Rd) for any ϑ1, and then demonstrate the existence and uniqueness of PMAs in (P2ϑ(H),dP(H)) the high-order moment metric space of probability measures on H. By the structures of PMAs rather than the Krylov–Bogolyubov method, we prove that the time-inhomogeneous transition operator has a MES in (P2ϑ(H),dP(H)). The upper semicontinuity of the PMAs is established as the noise intensity ϵ converges to ϵ0 in [0,1]. Under a large damping condition, we prove that the PMA is a singleton set, and establish the uniqueness, exponentially mixing and stability of MESs, periodic measures, and invariant measures of the corresponding systems. The difficulties caused by the non-monotonic drift term and the non-compactness of the standard Sobolev embedding on unbounded domains are surmounted by a balance condition 2β+1|ηβ| and the idea of uniform tail-ends estimates. Several numerical simulations are provided for above qualitative analysis. The methods used in this paper can be applied to other stochastic real or complex-valued PDEs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信