蔡氏电路中分形诱导的多稳定性

IF 5.6 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Ning Wang, Yifeng Lv, Han Bao, Shuhao Zhao, Quan Xu
{"title":"蔡氏电路中分形诱导的多稳定性","authors":"Ning Wang,&nbsp;Yifeng Lv,&nbsp;Han Bao,&nbsp;Shuhao Zhao,&nbsp;Quan Xu","doi":"10.1016/j.chaos.2025.116939","DOIUrl":null,"url":null,"abstract":"<div><div>We study the emergence of multistability in a Chua’s circuit induced by fractal Chua’s diode with piecewise-linear self-similar segments. It not only involves the latest reported matryoshka attractors, but generates additional heterogeneous ones. In the case considered, we observe the dynamical evolution from bistable states to coexisting heterogeneous and matryoshka multistable states. In specific, the fractal-induced emergence of coexisting one pair of matryoshka chaotic hollows, two pairs of chaotic branches, one periodic limit cycle, and five locally stable points is confirmed. For different scales of the initial conditions, the coexisting attractors with different amplitudes emerge or disappear, leaving the system mixed multistable. We further study the basins of attraction for investigating the multiscale self-similar structure in the regime of this mixed multistability. The observed multistability brings about a new source of unpredictability and complexity in a simple deterministic piecewise-linear system.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"200 ","pages":"Article 116939"},"PeriodicalIF":5.6000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fractal-induced multistability in Chua’s circuit\",\"authors\":\"Ning Wang,&nbsp;Yifeng Lv,&nbsp;Han Bao,&nbsp;Shuhao Zhao,&nbsp;Quan Xu\",\"doi\":\"10.1016/j.chaos.2025.116939\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study the emergence of multistability in a Chua’s circuit induced by fractal Chua’s diode with piecewise-linear self-similar segments. It not only involves the latest reported matryoshka attractors, but generates additional heterogeneous ones. In the case considered, we observe the dynamical evolution from bistable states to coexisting heterogeneous and matryoshka multistable states. In specific, the fractal-induced emergence of coexisting one pair of matryoshka chaotic hollows, two pairs of chaotic branches, one periodic limit cycle, and five locally stable points is confirmed. For different scales of the initial conditions, the coexisting attractors with different amplitudes emerge or disappear, leaving the system mixed multistable. We further study the basins of attraction for investigating the multiscale self-similar structure in the regime of this mixed multistability. The observed multistability brings about a new source of unpredictability and complexity in a simple deterministic piecewise-linear system.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"200 \",\"pages\":\"Article 116939\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S096007792500952X\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S096007792500952X","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

研究了分段线性自相似段的分形蔡氏二极管诱导蔡氏电路产生的多重稳定性。它不仅涉及最新报道的套娃吸引子,而且还产生了额外的异质吸引子。在这种情况下,我们观察到从双稳态到异质和套娃多稳态共存的动态演化。具体来说,证实了分形诱导下出现了共存的一对套套混沌空洞、两对混沌分支、一个周期极限环和五个局部稳定点。对于初始条件的不同尺度,不同幅值的共存吸引子出现或消失,使系统成为混合多稳态。我们进一步研究了这种混合多稳定性下的多尺度自相似结构的吸引盆地。观察到的多重稳定性给简单的确定性分段线性系统带来了不可预测性和复杂性的新来源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fractal-induced multistability in Chua’s circuit
We study the emergence of multistability in a Chua’s circuit induced by fractal Chua’s diode with piecewise-linear self-similar segments. It not only involves the latest reported matryoshka attractors, but generates additional heterogeneous ones. In the case considered, we observe the dynamical evolution from bistable states to coexisting heterogeneous and matryoshka multistable states. In specific, the fractal-induced emergence of coexisting one pair of matryoshka chaotic hollows, two pairs of chaotic branches, one periodic limit cycle, and five locally stable points is confirmed. For different scales of the initial conditions, the coexisting attractors with different amplitudes emerge or disappear, leaving the system mixed multistable. We further study the basins of attraction for investigating the multiscale self-similar structure in the regime of this mixed multistability. The observed multistability brings about a new source of unpredictability and complexity in a simple deterministic piecewise-linear system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信