分数阶Aizawa混沌系统存在唯一性准则的一种新颖Ćirić-Reich-Rus不动点方法

IF 5.6 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Haroon Ahmad , Fahim Ud Din , Mudasir Younis
{"title":"分数阶Aizawa混沌系统存在唯一性准则的一种新颖Ćirić-Reich-Rus不动点方法","authors":"Haroon Ahmad ,&nbsp;Fahim Ud Din ,&nbsp;Mudasir Younis","doi":"10.1016/j.chaos.2025.116932","DOIUrl":null,"url":null,"abstract":"<div><div>This manuscript introduces a refined class of functions named as the basic function <span><math><msup><mrow><mi>F</mi></mrow><mrow><mi>B</mi></mrow></msup></math></span> that erases unnecessary conditions, while maintaining the existence and uniqueness results of fixed points. The desired fixed points results are achieved through an interpolative extended <span><math><msup><mrow><mi>F</mi></mrow><mrow><mi>B</mi></mrow></msup></math></span>-Ćirić–Reich–Rus contraction framework. We prove the validity of our fixed-point results by showing examples that demonstrate these contractions are effective. As an application, we utilized the proposed basic contraction technique to determine the existence and uniqueness criteria for solutions of the fractional-order Aizawa system through the lens of the Atangana–Baleanu fractional derivative. We employed the two-step Lagrange polynomial method as an approximation technique for Atangana–Baleanu derivatives before examining the graphical behavior and Lyapunov exponents of the fractional Aizawa attractor for practical applications.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"200 ","pages":"Article 116932"},"PeriodicalIF":5.6000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel Ćirić–Reich–Rus fixed point approach for the existence and uniqueness criterion of a fractional-order Aizawa chaotic system\",\"authors\":\"Haroon Ahmad ,&nbsp;Fahim Ud Din ,&nbsp;Mudasir Younis\",\"doi\":\"10.1016/j.chaos.2025.116932\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This manuscript introduces a refined class of functions named as the basic function <span><math><msup><mrow><mi>F</mi></mrow><mrow><mi>B</mi></mrow></msup></math></span> that erases unnecessary conditions, while maintaining the existence and uniqueness results of fixed points. The desired fixed points results are achieved through an interpolative extended <span><math><msup><mrow><mi>F</mi></mrow><mrow><mi>B</mi></mrow></msup></math></span>-Ćirić–Reich–Rus contraction framework. We prove the validity of our fixed-point results by showing examples that demonstrate these contractions are effective. As an application, we utilized the proposed basic contraction technique to determine the existence and uniqueness criteria for solutions of the fractional-order Aizawa system through the lens of the Atangana–Baleanu fractional derivative. We employed the two-step Lagrange polynomial method as an approximation technique for Atangana–Baleanu derivatives before examining the graphical behavior and Lyapunov exponents of the fractional Aizawa attractor for practical applications.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"200 \",\"pages\":\"Article 116932\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077925009452\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925009452","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文引入了一类改进的函数,称为基本函数FB,它在保持不动点的存在唯一性结果的同时,消除了不必要的条件。期望的不动点结果是通过插值扩展FB -Ćirić-Reich-Rus收缩框架实现的。我们通过实例证明了这些压缩是有效的,从而证明了不动点结果的有效性。作为一个应用,我们利用提出的基本收缩技术,通过Atangana-Baleanu分数阶导数透镜确定分数阶Aizawa系统解的存在性和唯一性准则。在研究分数阶Aizawa吸引子的图形行为和Lyapunov指数的实际应用之前,我们采用了两步拉格朗日多项式方法作为Atangana-Baleanu导数的近似技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel Ćirić–Reich–Rus fixed point approach for the existence and uniqueness criterion of a fractional-order Aizawa chaotic system
This manuscript introduces a refined class of functions named as the basic function FB that erases unnecessary conditions, while maintaining the existence and uniqueness results of fixed points. The desired fixed points results are achieved through an interpolative extended FB-Ćirić–Reich–Rus contraction framework. We prove the validity of our fixed-point results by showing examples that demonstrate these contractions are effective. As an application, we utilized the proposed basic contraction technique to determine the existence and uniqueness criteria for solutions of the fractional-order Aizawa system through the lens of the Atangana–Baleanu fractional derivative. We employed the two-step Lagrange polynomial method as an approximation technique for Atangana–Baleanu derivatives before examining the graphical behavior and Lyapunov exponents of the fractional Aizawa attractor for practical applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信