Foglia A. , Cervone D. , Frasci E. , Arsie I. , Pianese C. , Polverino P.
{"title":"基于模型的柴油机燃烧控制优化","authors":"Foglia A. , Cervone D. , Frasci E. , Arsie I. , Pianese C. , Polverino P.","doi":"10.1016/j.ifacol.2025.07.093","DOIUrl":null,"url":null,"abstract":"<div><div>Polyoxymethylene dimethyl ethers (OMEx) represent a concrete solution as drop-in fuels in the context of lengthening the usage of conventional compression ignition engines, whose high efficiency and power density still make them the preferred solution for long-haul transportation. The chemical structure of these e-fuels ensures a significant reduction in soot emissions, while their enhanced combustion efficiency leads to many advantages in terms of NOx. The following study focuses on the development of a one-dimensional model for the design and optimization of control strategies with the objective of reducing the energetic drawback resulting from the introduction of OMEx in blends with Diesel. The methodology is concerned with the initial development and validation of the combustion model that is employed to simulate the performance of conventional Diesel engines. The calibration procedure and the identification of model parameters are executed using the software GT-Suite, with consideration given to different operating points across the engine map. Subsequently, an assessment of the emission reduction and optimization control strategies for Diesel/OMEx blends is conducted.</div></div>","PeriodicalId":37894,"journal":{"name":"IFAC-PapersOnLine","volume":"59 5","pages":"Pages 127-132"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model based combustion control optimization of compression ignition engine fuelled with Diesel/OMEx blends\",\"authors\":\"Foglia A. , Cervone D. , Frasci E. , Arsie I. , Pianese C. , Polverino P.\",\"doi\":\"10.1016/j.ifacol.2025.07.093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Polyoxymethylene dimethyl ethers (OMEx) represent a concrete solution as drop-in fuels in the context of lengthening the usage of conventional compression ignition engines, whose high efficiency and power density still make them the preferred solution for long-haul transportation. The chemical structure of these e-fuels ensures a significant reduction in soot emissions, while their enhanced combustion efficiency leads to many advantages in terms of NOx. The following study focuses on the development of a one-dimensional model for the design and optimization of control strategies with the objective of reducing the energetic drawback resulting from the introduction of OMEx in blends with Diesel. The methodology is concerned with the initial development and validation of the combustion model that is employed to simulate the performance of conventional Diesel engines. The calibration procedure and the identification of model parameters are executed using the software GT-Suite, with consideration given to different operating points across the engine map. Subsequently, an assessment of the emission reduction and optimization control strategies for Diesel/OMEx blends is conducted.</div></div>\",\"PeriodicalId\":37894,\"journal\":{\"name\":\"IFAC-PapersOnLine\",\"volume\":\"59 5\",\"pages\":\"Pages 127-132\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IFAC-PapersOnLine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S240589632500446X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IFAC-PapersOnLine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S240589632500446X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Model based combustion control optimization of compression ignition engine fuelled with Diesel/OMEx blends
Polyoxymethylene dimethyl ethers (OMEx) represent a concrete solution as drop-in fuels in the context of lengthening the usage of conventional compression ignition engines, whose high efficiency and power density still make them the preferred solution for long-haul transportation. The chemical structure of these e-fuels ensures a significant reduction in soot emissions, while their enhanced combustion efficiency leads to many advantages in terms of NOx. The following study focuses on the development of a one-dimensional model for the design and optimization of control strategies with the objective of reducing the energetic drawback resulting from the introduction of OMEx in blends with Diesel. The methodology is concerned with the initial development and validation of the combustion model that is employed to simulate the performance of conventional Diesel engines. The calibration procedure and the identification of model parameters are executed using the software GT-Suite, with consideration given to different operating points across the engine map. Subsequently, an assessment of the emission reduction and optimization control strategies for Diesel/OMEx blends is conducted.
期刊介绍:
All papers from IFAC meetings are published, in partnership with Elsevier, the IFAC Publisher, in theIFAC-PapersOnLine proceedings series hosted at the ScienceDirect web service. This series includes papers previously published in the IFAC website.The main features of the IFAC-PapersOnLine series are: -Online archive including papers from IFAC Symposia, Congresses, Conferences, and most Workshops. -All papers accepted at the meeting are published in PDF format - searchable and citable. -All papers published on the web site can be cited using the IFAC PapersOnLine ISSN and the individual paper DOI (Digital Object Identifier). The site is Open Access in nature - no charge is made to individuals for reading or downloading. Copyright of all papers belongs to IFAC and must be referenced if derivative journal papers are produced from the conference papers. All papers published in IFAC-PapersOnLine have undergone a peer review selection process according to the IFAC rules.