综合征监测缺失数据的时空处理方法及其在健康管理信息系统数据中的应用

IF 1.7 Q3 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH
Nicholas B. Link , Anuraag Gopaluni , Isabel Fulcher , Emma Jean Boley , Rachel C. Nethery , Bethany Hedt-Gauthier
{"title":"综合征监测缺失数据的时空处理方法及其在健康管理信息系统数据中的应用","authors":"Nicholas B. Link ,&nbsp;Anuraag Gopaluni ,&nbsp;Isabel Fulcher ,&nbsp;Emma Jean Boley ,&nbsp;Rachel C. Nethery ,&nbsp;Bethany Hedt-Gauthier","doi":"10.1016/j.sste.2025.100736","DOIUrl":null,"url":null,"abstract":"<div><div>Syndromic surveillance monitors infectious diseases, especially in situations where direct disease monitoring is unavailable. However, conventional syndromic surveillance methods face challenges in handling missing data, particularly when the missing completely at random (MCAR) assumption is violated. Additionally, these methods often do not leverage spatio-temporal techniques that can reduce bias and improve their performance. This study addresses both of these limitations by comparing a baseline syndromic surveillance model with a frequentist spatio-temporal model used in infectious diseases and a Bayesian spatio-temporal conditional autoregressive (CAR) model.</div><div>Drawing inspiration from COVID-19 symptom data collected via routine health systems in Liberia, we conduct simulations with various data generating processes, spatio-temporal correlation structures, and missing data mechanisms. Across the diverse simulations for outbreak detection, the baseline model and the Bayesian CAR model had high specificity, thus limiting outbreak false alarms. The findings underscore the importance of considering spatio-temporal models for syndromic surveillance.</div></div>","PeriodicalId":46645,"journal":{"name":"Spatial and Spatio-Temporal Epidemiology","volume":"54 ","pages":"Article 100736"},"PeriodicalIF":1.7000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatio-temporal methods to handle missing data in syndromic surveillance with applications to health management information system data\",\"authors\":\"Nicholas B. Link ,&nbsp;Anuraag Gopaluni ,&nbsp;Isabel Fulcher ,&nbsp;Emma Jean Boley ,&nbsp;Rachel C. Nethery ,&nbsp;Bethany Hedt-Gauthier\",\"doi\":\"10.1016/j.sste.2025.100736\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Syndromic surveillance monitors infectious diseases, especially in situations where direct disease monitoring is unavailable. However, conventional syndromic surveillance methods face challenges in handling missing data, particularly when the missing completely at random (MCAR) assumption is violated. Additionally, these methods often do not leverage spatio-temporal techniques that can reduce bias and improve their performance. This study addresses both of these limitations by comparing a baseline syndromic surveillance model with a frequentist spatio-temporal model used in infectious diseases and a Bayesian spatio-temporal conditional autoregressive (CAR) model.</div><div>Drawing inspiration from COVID-19 symptom data collected via routine health systems in Liberia, we conduct simulations with various data generating processes, spatio-temporal correlation structures, and missing data mechanisms. Across the diverse simulations for outbreak detection, the baseline model and the Bayesian CAR model had high specificity, thus limiting outbreak false alarms. The findings underscore the importance of considering spatio-temporal models for syndromic surveillance.</div></div>\",\"PeriodicalId\":46645,\"journal\":{\"name\":\"Spatial and Spatio-Temporal Epidemiology\",\"volume\":\"54 \",\"pages\":\"Article 100736\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spatial and Spatio-Temporal Epidemiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1877584525000279\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spatial and Spatio-Temporal Epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877584525000279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

摘要

综合征监测监测传染病,特别是在无法进行直接疾病监测的情况下。然而,传统的综合征监测方法在处理缺失数据方面面临挑战,特别是在完全随机缺失假设被违反的情况下。此外,这些方法通常不利用可以减少偏差和提高其性能的时空技术。本研究通过将基线综合征监测模型与用于传染病的频率时空模型和贝叶斯时空条件自回归(CAR)模型进行比较,解决了这两个局限性。从利比里亚常规卫生系统收集的COVID-19症状数据中获得灵感,我们对各种数据生成过程、时空相关结构和缺失数据机制进行了模拟。在各种爆发检测模拟中,基线模型和贝叶斯CAR模型具有高特异性,从而限制了爆发假警报。研究结果强调了考虑时空模型对综合征监测的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatio-temporal methods to handle missing data in syndromic surveillance with applications to health management information system data
Syndromic surveillance monitors infectious diseases, especially in situations where direct disease monitoring is unavailable. However, conventional syndromic surveillance methods face challenges in handling missing data, particularly when the missing completely at random (MCAR) assumption is violated. Additionally, these methods often do not leverage spatio-temporal techniques that can reduce bias and improve their performance. This study addresses both of these limitations by comparing a baseline syndromic surveillance model with a frequentist spatio-temporal model used in infectious diseases and a Bayesian spatio-temporal conditional autoregressive (CAR) model.
Drawing inspiration from COVID-19 symptom data collected via routine health systems in Liberia, we conduct simulations with various data generating processes, spatio-temporal correlation structures, and missing data mechanisms. Across the diverse simulations for outbreak detection, the baseline model and the Bayesian CAR model had high specificity, thus limiting outbreak false alarms. The findings underscore the importance of considering spatio-temporal models for syndromic surveillance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Spatial and Spatio-Temporal Epidemiology
Spatial and Spatio-Temporal Epidemiology PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH-
CiteScore
5.10
自引率
8.80%
发文量
63
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信