基于补丁水平显著性嵌入的脑CT图像缺血性脑卒中分类双注意机制

Q1 Medicine
Mahesh Anil Inamdar , Anjan Gudigar , U. Raghavendra , Massimo Salvi , Nithin Raj , J. Pooja , Ajay Hegde , Girish R. Menon , U. Rajendra Acharya
{"title":"基于补丁水平显著性嵌入的脑CT图像缺血性脑卒中分类双注意机制","authors":"Mahesh Anil Inamdar ,&nbsp;Anjan Gudigar ,&nbsp;U. Raghavendra ,&nbsp;Massimo Salvi ,&nbsp;Nithin Raj ,&nbsp;J. Pooja ,&nbsp;Ajay Hegde ,&nbsp;Girish R. Menon ,&nbsp;U. Rajendra Acharya","doi":"10.1016/j.imu.2025.101678","DOIUrl":null,"url":null,"abstract":"<div><div>Stroke is currently a major contributor to disability and mortality across the globe, with ischemic stroke being the most predominant subtype. Accurate and timely diagnosis is critical for effective treatment. This study introduces a novel deep learning framework that leverages patch-level significance analysis for precise identification of ischemic strokes in Computed Tomography (CT) images. Our approach integrates a dual attention mechanism dynamic and cross attention with hybrid convolutional kernels to analyze the relative importance of brain regions in stroke diagnosis. The proposed architecture captures both fine-grained and contextual features to identify significant regions through attention-weighted feature embedding. The framework is evaluated on a dataset of 2023 CT of four different classes (i.e., acute: 361, chronic: 267, subacute: 382, and normal: 1013 images), employing both four and nine non-overlapping patch configurations. Experimental results demonstrate that the light gradient boosted machine classifier achieved the highest patch identification accuracy of 94.81 % and the extra tree classifier achieved an accuracy of 99.51 % for classification using 4-patch configuration analysis. The study highlights the importance of features obtained from dense layers in mitigating overfitting and improving generalization. In addition, the study reveals the potential of attention modules with interpretable factors for patch identification of cerebral infarction, suggesting the potential of artificial intelligence in aiding medical diagnosis.</div></div>","PeriodicalId":13953,"journal":{"name":"Informatics in Medicine Unlocked","volume":"57 ","pages":"Article 101678"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual attention mechanisms with patch-level significance embedding for ischemic stroke classification in brain CT images\",\"authors\":\"Mahesh Anil Inamdar ,&nbsp;Anjan Gudigar ,&nbsp;U. Raghavendra ,&nbsp;Massimo Salvi ,&nbsp;Nithin Raj ,&nbsp;J. Pooja ,&nbsp;Ajay Hegde ,&nbsp;Girish R. Menon ,&nbsp;U. Rajendra Acharya\",\"doi\":\"10.1016/j.imu.2025.101678\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Stroke is currently a major contributor to disability and mortality across the globe, with ischemic stroke being the most predominant subtype. Accurate and timely diagnosis is critical for effective treatment. This study introduces a novel deep learning framework that leverages patch-level significance analysis for precise identification of ischemic strokes in Computed Tomography (CT) images. Our approach integrates a dual attention mechanism dynamic and cross attention with hybrid convolutional kernels to analyze the relative importance of brain regions in stroke diagnosis. The proposed architecture captures both fine-grained and contextual features to identify significant regions through attention-weighted feature embedding. The framework is evaluated on a dataset of 2023 CT of four different classes (i.e., acute: 361, chronic: 267, subacute: 382, and normal: 1013 images), employing both four and nine non-overlapping patch configurations. Experimental results demonstrate that the light gradient boosted machine classifier achieved the highest patch identification accuracy of 94.81 % and the extra tree classifier achieved an accuracy of 99.51 % for classification using 4-patch configuration analysis. The study highlights the importance of features obtained from dense layers in mitigating overfitting and improving generalization. In addition, the study reveals the potential of attention modules with interpretable factors for patch identification of cerebral infarction, suggesting the potential of artificial intelligence in aiding medical diagnosis.</div></div>\",\"PeriodicalId\":13953,\"journal\":{\"name\":\"Informatics in Medicine Unlocked\",\"volume\":\"57 \",\"pages\":\"Article 101678\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Informatics in Medicine Unlocked\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S235291482500067X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatics in Medicine Unlocked","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S235291482500067X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

中风目前是全球范围内导致残疾和死亡的主要原因,其中缺血性中风是最主要的亚型。准确和及时的诊断是有效治疗的关键。本研究引入了一种新的深度学习框架,该框架利用斑块水平的显著性分析来精确识别计算机断层扫描(CT)图像中的缺血性中风。我们的方法将双重注意机制、动态注意和交叉注意与混合卷积核相结合,分析脑区域在脑卒中诊断中的相对重要性。所提出的体系结构捕获细粒度和上下文特征,通过关注加权特征嵌入来识别重要区域。该框架在2023个不同类别的CT数据集上进行评估(即急性:361,慢性:267,亚急性:382,正常:1013),采用4个和9个不重叠的补丁配置。实验结果表明,光梯度增强的机器分类器在4块结构分析中的分类准确率最高,达到94.81%,额外树分类器的分类准确率达到99.51%。该研究强调了从密集层中获得的特征在减轻过拟合和提高泛化方面的重要性。此外,该研究揭示了具有可解释因素的注意力模块在脑梗死斑块识别方面的潜力,这表明人工智能在辅助医疗诊断方面具有潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dual attention mechanisms with patch-level significance embedding for ischemic stroke classification in brain CT images
Stroke is currently a major contributor to disability and mortality across the globe, with ischemic stroke being the most predominant subtype. Accurate and timely diagnosis is critical for effective treatment. This study introduces a novel deep learning framework that leverages patch-level significance analysis for precise identification of ischemic strokes in Computed Tomography (CT) images. Our approach integrates a dual attention mechanism dynamic and cross attention with hybrid convolutional kernels to analyze the relative importance of brain regions in stroke diagnosis. The proposed architecture captures both fine-grained and contextual features to identify significant regions through attention-weighted feature embedding. The framework is evaluated on a dataset of 2023 CT of four different classes (i.e., acute: 361, chronic: 267, subacute: 382, and normal: 1013 images), employing both four and nine non-overlapping patch configurations. Experimental results demonstrate that the light gradient boosted machine classifier achieved the highest patch identification accuracy of 94.81 % and the extra tree classifier achieved an accuracy of 99.51 % for classification using 4-patch configuration analysis. The study highlights the importance of features obtained from dense layers in mitigating overfitting and improving generalization. In addition, the study reveals the potential of attention modules with interpretable factors for patch identification of cerebral infarction, suggesting the potential of artificial intelligence in aiding medical diagnosis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Informatics in Medicine Unlocked
Informatics in Medicine Unlocked Medicine-Health Informatics
CiteScore
9.50
自引率
0.00%
发文量
282
审稿时长
39 days
期刊介绍: Informatics in Medicine Unlocked (IMU) is an international gold open access journal covering a broad spectrum of topics within medical informatics, including (but not limited to) papers focusing on imaging, pathology, teledermatology, public health, ophthalmological, nursing and translational medicine informatics. The full papers that are published in the journal are accessible to all who visit the website.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信